Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Theriogenology ; 205: 106-113, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37116410

RESUMO

African catfish (Clarias gariepinus) is a promising food fish species with significant potential and growing mass of production in freshwater aquaculture. Male African catfish possess improved production characteristics over females, therefore the use of monosex populations could be advantageous for aquaculture production. However, our knowledge about the sex determination mechanism of this species is still limited and controversial. A previously isolated male-specific DNA marker (CgaY1) was validated using offspring groups from targeted crosses (n = 630) and it was found to predict the sex of 608 individuals correctly (96.43% accuracy). Using the proportion of recombinants, we estimated the average genetic distance between the potential sex determination locus and the sex-specific marker to be 3.57 cM. As an earlier study suggested that both XX/XY and ZZ/ZW systems coexist in this species, we tested the applicability of their putative 'moderately sex-linked loci' and found that no sex-specific amplification could be detected for any of them. In addition, temperature-induced masculinization suggested by others was also tested, but no such effect was detected in our stocks when the published parameters were used for heat treatment. Altogether, our results support an exclusive XX/XY sex determination system in our African catfish stock and indicate a good potential for the future use of this male-specific DNA marker in research and commercial production.


Assuntos
Peixes-Gato , Feminino , Masculino , Animais , Peixes-Gato/genética , Marcadores Genéticos , Hungria , Aquicultura
2.
Parasit Vectors ; 8: 141, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25886048

RESUMO

BACKGROUND: Whirling disease, caused by the myxozoan parasite Myxobolus cerebralis, has high economical and ecological importance worldwide. Susceptibility to the disease varies considerably among salmonid species. In brown trout (Salmo trutta) the infection is usually subclinical with low mortality, which increases the risk of parasite dissemination, especially when farm fish are used for stocking natural habitats. The influence of intraspecific genetic differences (especially the level of homozygosity) on susceptibility is unknown. Therefore, we examined the possible correlations between parental genetic diversity and offspring susceptibility of brown trout stocks to whirling disease. METHODS: Two brown trout brood stocks from a German and a Hungarian fish farm were genetically characterized using microsatellite and lineage-specific genetic markers. The individual inbreeding coefficient f and pairwise relatedness factor r were estimated based on eight microsatellite markers. Brood stock populations were divided into groups according to low and high f and r value estimates and subjected to selective fertilization. The offspring from these separate groups were exposed to M. cerebralis actinospores, and the infection prevalence and intensity was measured and statistically analysed. RESULTS: The analysis of phylogeographic lineage heritage revealed high heterogeneity in the Hungarian brood stock since > 50% of individuals were Atlantic-Danubian hybrids, while only pure Atlantic-descending specimens were detected in the German population. Based on f msat and r msat estimations, classified non-inbred (NIB), inbred (IB) and a group of closely related fish (REL) were created. The susceptibility of their offspring varied considerably. Although there was no significant difference in the prevalence of M. cerebralis infection, the mean intensity of infection differed significantly between NIB and IB groups. In REL and IB groups, a high variability was observed in infection intensity. No external clinical signs were observed in the exposed brown trout groups. CONCLUSIONS: Our findings indicate that the allelic diversity of brown trout brood stock may constitute a significant factor in disease susceptibility, i.e. the intensity of parasite infection in the subsequent generation.


Assuntos
Doenças dos Peixes/parasitologia , Variação Genética , Repetições de Microssatélites/genética , Myxobolus/fisiologia , Doenças Parasitárias em Animais/parasitologia , Truta/genética , Animais , Suscetibilidade a Doenças , Feminino , Endogamia , Masculino , Filogeografia , Truta/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...