Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mater Eng Perform ; 32(5): 2432-2444, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36068855

RESUMO

This work deals with the development of cyanide-free copper-silver electroplated coatings on AISI-1075 steel and its corrosion behavior under a 5% NaClO solution (commercial household bleach). A cyanide-free bath based on sodium thiosulfate was employed to obtain the silver coatings using current densities from 0.2 to 5.0 mA/cm2 and different concentrations of EDTA (additive). The evolution of the open circuit potential with time showed that silver is anodic with respect to copper, so there were no intense attacks in the silver pores. Adhesion measurements were made on both coatings by the tape test. The behavior against corrosion was evaluated by polarization resistance (Rp) in samples with the best coating adhesion. The best results were obtained with a silver coating of about 20 µm in thickness deposited on copper coating previously polished with colloidal silica. The best performance was attributed to the formation of AgCl as demonstrated by x-ray diffraction and scanning electron microscopy.

2.
Data Brief ; 39: 107511, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34761086

RESUMO

This article presents the raw data of silver concentration ([Ag]) obtained as a function of time (t) from silver leaching experiments, which were conducted using a synthetic sodium-silver jarosite and different complexing agents: thiosulfate, thiocyanate, and cyanide. Leaching experiments were performed under different conditions of temperature, pH and lixiviant concentration. The data refer to the article "Silver leaching from jarosite-type compounds using cyanide and non-cyanide lixiviants: a kinetic approach" (Islas et al., 2021), in which they were used to determine the leaching kinetics of jarosite-type compounds. The datasets were obtained experimentally from batch experiments. Concentration of silver, [Ag], was determined in each experiment as a function of time by atomic absorption spectroscopy. The information presented in this article can be useful for engineering students interested in mineral processing; particularly, for the calculation of kinetic parameters of silver leaching process. The data could also help in the formulation, implementation, or optimization of strategies for extraction of valuable metals from residues generated by the hydrometallurgical industry.

3.
Environ Pollut ; 257: 113492, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31744683

RESUMO

Jarosite and birnessite secondary minerals play a pivotal role in the mobility, transport and fate of trace elements in the environment, although geochemical interactions of these compounds with extremely toxic thallium (Tl) remain poorly known. In this study, we investigated the sorption behavior of Tl(I) onto synthetic jarosite and birnessite, two minerals commonly found in soils and sediments as well as in mining-impacted areas where harsh conditions are involved. To achieve this, sorption and desorption experiments were carried out under two different acidic conditions and various Tl(I) concentrations to mimic natural scenarios. In addition, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and inductively coupled plasma (ICP) analyses were conducted to determine the performance of both minerals for Tl(I) sequestration. Our results indicate that both phases can effectively remove aqueous Tl by different sorption mechanisms. Jarosite preferentially incorporates Tl(I) into the structure to form Tl(I)-jarosite and eventually the mineral dorallcharite (TlFe3(SO4)2(OH)6) as increasing amounts of Tl are employed. Birnessite, however, favorably uptakes Tl(I) through an irreversible surface adsorption mechanism, underlining the affinity of Tl for this mineral in the entire concentration range studied (0.5-5 mmol L-1). Lastly, the presence of Tl(I) in conditions where aqueous molar ratio Tl/Mn is ∼0.25 inhibits the formation of birnessite since oxidation of Tl(I) to Tl(III) followed by precipitation of avicennite (Tl2O3) take place. Thus, the present research may provide useful insights on the role of both jarosite and birnessite minerals in Tl environmental cycles.


Assuntos
Compostos Férricos/análise , Óxidos/análise , Poluentes do Solo/análise , Sulfatos/análise , Tálio/análise , Ácidos , Adsorção , Minerais/química , Mineração , Modelos Químicos , Solo/química
4.
Environ Pollut ; 243(Pt B): 1833-1845, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30408871

RESUMO

Thallium (Tl) and its compounds are non-essential and highly toxic for living organisms, even at low concentrations. In this paper, we analyzed the presence and geochemical distribution of Tl in different mining-metallurgical and sediment samples collected from several mining zones of Mexico. A modified BCR sequential extraction procedure was also applied to the samples to investigate the geochemical behavior and potential environmental risk of Tl according to types of ore deposit and mineral processing method applied. Results revealed the presence of Tl in the majority of the mining-metallurgical samples, with labile concentrations reaching up to values of 184.4 mg kg-1, well above the environmental standards. A comparison of Tl partitioning in different samples showed that Tl was usually found associated with labile fractions instead of entrapped in the environmentally-passive residual fraction. Specifically, high levels of Tl were extracted from the exchangeable/acid-extractable and poorly-crystalline reducible fractions, suggesting its association with both soluble and amorphous Fe-Mn oxyhydroxides, respectively. Besides, Tl was also frequently found associated with the crystalline reducible fraction, presumably bonded to manganese oxides and jarosite-like minerals. Lastly, little amounts of Tl were extracted from the oxidizable fraction. Considering the fractionation of Tl in these mining-metallurgical samples, they may pose a significant environmental hazard. This study provides useful insights into the potential sources of Tl pollution in Mexico and emphasizes the need for further research to determine the extent of its impact and to develop effective remediation protocols to protect the environment from Tl toxicity.


Assuntos
Monitoramento Ambiental , Metalurgia , Mineração , Tálio/análise , Poluição Ambiental/análise , Compostos Férricos/química , Compostos de Manganês/química , México , Minerais/química , Óxidos/química , Sulfatos/química , Tálio/química
5.
Geochem Trans ; 17: 3, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27303211

RESUMO

BACKGROUND: The presence of natural and industrial jarosite type-compounds in the environment could have important implications in the mobility of potentially toxic elements such as lead, mercury, arsenic, chromium, among others. Understanding the dissolution reactions of jarosite-type compounds is notably important for an environmental assessment (for water and soil), since some of these elements could either return to the environment or work as temporary deposits of these species, thus would reduce their immediate environmental impact. RESULTS: This work reports the effects of temperature, pH, particle diameter and Cr(VI) content on the initial dissolution rates of K-Cr(VI)-jarosites (KFe3[(SO4)2 - X(CrO4)X](OH)6). Temperature (T) was the variable with the strongest effect, followed by pH in acid/alkaline medium (H3O(+)/OH(-)). It was found that the substitution of CrO4 (2-)in Y-site and the substitution of H3O(+) in M-site do not modify the dissolution rates. The model that describes the dissolution process is the unreacted core kinetic model, with the chemical reaction on the unreacted core surface. The dissolution in acid medium was congruent, while in alkaline media was incongruent. In both reaction media, there is a release of K(+), SO4 (2-) and CrO4 (2-) from the KFe3[(SO4)2 - X(CrO4)X](OH)6 structure, although the latter is rapidly absorbed by the solid residues of Fe(OH)3 in alkaline medium dissolutions. The dissolution of KFe3[(SO4)2 - X(CrO4)X](OH)6 exhibited good stability in a wide range of pH and T conditions corresponding to the calculated parameters of reaction order n, activation energy E A and dissolution rate constants for each kinetic stages of induction and progressive conversion. CONCLUSIONS: The kinetic analysis related to the reaction orders and calculated activation energies confirmed that extreme pH and T conditions are necessary to obtain considerably high dissolution rates. Extreme pH conditions (acidic or alkaline) cause the preferential release of K(+), SO4 (2-) and CrO4 (2-) from the KFe3[(SO4)2 - X(CrO4)X](OH)6 structure, although CrO4 (2-) is quickly adsorbed by Fe(OH)3 solid residues. The precipitation of phases such as KFe3[(SO4)2 - X(CrO4)X](OH)6, and the absorption of Cr(VI) after dissolution can play an important role as retention mechanisms of Cr(VI) in nature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA