Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Can J Exp Psychol ; 77(1): 57-72, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35925721

RESUMO

One of the most popular tasks used to test statistical learning (SL) involves asking participants to identify which of two stimuli, a triplet presented during the previous familiarization phase versus a new sequence made of the same stimuli never presented together, is more familiar based on the stream presented before, that is, to perform a two-alternative forced-choice (2-AFC) task. Despite the widespread use of this task, it has come under increasing criticism in current cognitive research due to psychometric flaws. A common practice to improve SL measurement involves increasing the number of 2-AFC trials by presenting the same items (triplets and foils) several times during the test phase. This work aimed to directly analyze the effect that this practice entails by examining how the proportion of correct discriminations of three-syllable nonsense words presented during the familiarization phase of an auditory triplet embedded task changed as the number of 2-AFC item repetitions increased. We also tested whether this effect was modulated by the predictability of the "words" embedded in the auditory streams (high and low) and the conditions under which they were presented to participants (implicit and explicit). Results showed that 2-AFC item repetitions had indeed detrimental effects on SL measurement, as indexed by a significant decrease in the proportion of correct discriminations as the number of items repetitions increased, both in the 2-AFC task performed under implicit and explicit conditions, although, in the first case, only for low-predictable "words." These findings recommend caution when using this strategy to improve SL measurement. (PsycInfo Database Record (c) 2023 APA, all rights reserved).


Assuntos
Aprendizagem , Humanos , Psicometria
2.
Front Psychol ; 13: 905762, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35846717

RESUMO

A current issue in psycholinguistic research is whether the language difficulties exhibited by children with developmental language disorder [DLD, previously labeled specific language impairment (SLI)] are due to deficits in their abilities to pick up patterns in the sensory environment, an ability known as statistical learning (SL), and the extent to which explicit learning mechanisms can be used to compensate for those deficits. Studies designed to test the compensatory role of explicit learning mechanisms in children with DLD are, however, scarce, and the few conducted so far have led to inconsistent results. This work aimed to provide new insights into the role that explicit learning mechanisms might play on implicit learning deficits in children with DLD by resorting to a new approach. This approach involved not only the collection of event-related potentials (ERPs), while preschool children with DLD [relative to typical language developmental (TLD) controls] were exposed to a continuous auditory stream made of the repetition of three-syllable nonsense words but, importantly, the collection of ERPs when the same children performed analogous versions of the same auditory SL task first under incidental (implicit) and afterward under intentional (explicit) conditions. In each of these tasks, the level of predictability of the three-syllable nonsense words embedded in the speech streams was also manipulated (high vs. low) to mimic natural languages closely. At the end of both tasks' exposure phase, children performed a two-alternative forced-choice (2-AFC) task from which behavioral evidence of SL was obtained. Results from the 2-AFC tasks failed to show reliable signs of SL in both groups of children. The ERPs data showed, however, significant modulations in the N100 and N400 components, taken as neural signatures of word segmentation in the brain, even though a detailed analysis of the neural responses revealed that only children from the TLD group seem to have taken advantage of the previous knowledge to enhance SL functioning. These results suggest that children with DLD showed deficits both in implicit and explicit learning mechanisms, casting doubts on the efficiency of the interventions relying on explicit instructions to help children with DLD to overcome their language difficulties.

3.
Front Hum Neurosci ; 16: 805723, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35280206

RESUMO

From an early age, exposure to a spoken language has allowed us to implicitly capture the structure underlying the succession of speech sounds in that language and to segment it into meaningful units (words). Statistical learning (SL), the ability to pick up patterns in the sensory environment without intention or reinforcement, is thus assumed to play a central role in the acquisition of the rule-governed aspects of language, including the discovery of word boundaries in the continuous acoustic stream. Although extensive evidence has been gathered from artificial languages experiments showing that children and adults are able to track the regularities embedded in the auditory input, as the probability of one syllable to follow another syllable in the speech stream, the developmental trajectory of this ability remains controversial. In this work, we have collected Event-Related Potentials (ERPs) while 5-year-old children and young adults (university students) were exposed to a speech stream made of the repetition of eight three-syllable nonsense words presenting different levels of predictability (high vs. low) to mimic closely what occurs in natural languages and to get new insights into the changes that the mechanisms underlying auditory statistical learning (aSL) might undergo through the development. The participants performed the aSL task first under implicit and, subsequently, under explicit conditions to further analyze if children take advantage of previous knowledge of the to-be-learned regularities to enhance SL, as observed with the adult participants. These findings would also contribute to extend our knowledge of the mechanisms available to assist SL at each developmental stage. Although behavioral signs of learning, even under explicit conditions, were only observed for the adult participants, ERP data showed evidence of online segmentation in the brain in both groups, as indexed by modulations in the N100 and N400 components. A detailed analysis of the neural data suggests, however, that adults and children rely on different mechanisms to assist the extraction of word-like units from the continuous speech stream, hence supporting the view that SL with auditory linguistic materials changes through development.

4.
Front Hum Neurosci ; 14: 577991, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33173474

RESUMO

Statistical learning (SL), the process of extracting regularities from the environment, is a fundamental skill of our cognitive system to structure the world regularly and predictably. SL has been studied using mainly behavioral tasks under implicit conditions and with triplets presenting the same level of difficulty, i.e., a mean transitional probability (TP) of 1.00. Yet, the neural mechanisms underlying SL under other learning conditions remain largely unknown. Here, we investigated the neurofunctional correlates of SL using triplets (i.e., three-syllable nonsense words) with a mean TP of 1.00 (easy "words") and 0.50 (hard "words") in an SL task performed under incidental (implicit) and intentional (explicit) conditions, to determine whether the same core mechanisms were recruited to assist learning. Event-related potentials (ERPs) were recorded while participants listened firstly to a continuous auditory stream made of the concatenation of four easy and four hard "words" under implicit instructions, and subsequently to another auditory stream made of the concatenation of four easy and four hard "words" drawn from another artificial language under explicit instructions. The stream in each of the SL tasks was presented in two consecutive blocks of ~3.5-min each (~7-min in total) to further examine how ERP components might change over time. Behavioral measures of SL were collected after the familiarization phase of each SL task by asking participants to perform a two-alternative forced-choice (2-AFC) task. Results from the 2-AFC tasks revealed a moderate but reliable level of SL, with no differences between conditions. ERPs were, nevertheless, sensitive to the effect of TPs, showing larger amplitudes of N400 for easy "words," as well as to the effect of instructions, with a reduced N250 for "words" presented under explicit conditions. Also, significant differences in the N100 were found as a result of the interaction between TPs, instructions, and the amount of exposure to the auditory stream. Taken together, our findings suggest that triplets' predictability impacts the emergence of "words" representations in the brain both for statistical regularities extracted under incidental and intentional instructions, although the prior knowledge of the "words" seems to favor the recruitment of different SL mechanisms.

5.
Front Hum Neurosci ; 11: 76, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28270759

RESUMO

Change detection is essential for visual perception and performance in our environment. However, observers often miss changes that should be easily noticed. A failure in any of the processes involved in conscious detection (encoding the pre-change display, maintenance of that information within working memory, and comparison of the pre and post change displays) can lead to change blindness. Given that unnoticed visual changes in a scene can be easily detected once attention is drawn to them, it has been suggested that attention plays an important role on visual awareness. In the present study, we used behavioral and electrophysiological (ERPs) measures to study whether the manipulation of retrospective spatial attention affects performance and modulates brain activity related to the awareness of a change. To that end, exogenous peripheral cues were presented during the delay period (retro-cues) between the first and the second array using a one-shot change detection task. Awareness of a change was associated with a posterior negative amplitude shift around 228-292 ms ("Visual Awareness Negativity"), which was independent of retrospective spatial attention, as it was elicited to both validly and invalidly cued change trials. Change detection was also associated with a larger positive deflection around 420-580 ms ("Late Positivity"), but only when the peripheral retro-cues correctly predicted the change. Present results confirm that the early and late ERP components related to change detection can be functionally dissociated through manipulations of exogenous retro-cueing using a change blindness paradigm.

6.
Int J Psychophysiol ; 91(2): 121-31, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24342058

RESUMO

The mechanisms underlying inhibition of return (IOR) are still under debate. Besides the probable implication of several processes in its generation, a reason for this uncertainty may be related to experimental factors affecting the presence, time course, and magnitude of IOR. Two of them may be related to the arrangement of the stimuli in the visual field that could cause possible interactions between IOR and response conflict effects (horizontal arrangements) or between IOR and perceptual asymmetries (vertical arrangement). The purpose of the present study was to explore location and color cueing effects with a vertical arrangement of stimuli, free of S-R compatibility effects. To examine this possibility, a cue-back task with stimuli in the vertical meridian was employed. Targets could randomly and equiprobably appear at cued or uncued locations, or with cued or uncued color. These cueing effects were analyzed on behavior and ERPs separately for upper and lower visual fields (UVF and LVF). Under location cueing, behavioral responses were slower (spatial IOR) in both hemifields. In the ERPs, N1 reductions were observed in both visual fields although with different modulations in their latency and scalp distribution. In the P3 rising beginning, posterior negative deflections in the LVF (Nd) and anterior positive deflections (Pd) in the UVF were observed. Under color cueing, P3 amplitude was reduced in the UVF accompanied by no behavioral effects. These results suggest that different patterns of brain activation can be obtained in upper and lower visual fields under spatial- and non-spatial cueing conditions.


Assuntos
Encéfalo/fisiologia , Sinais (Psicologia) , Eletroencefalografia/métodos , Potenciais Evocados Visuais/fisiologia , Desempenho Psicomotor/fisiologia , Percepção Visual/fisiologia , Adulto , Percepção de Cores/fisiologia , Eletroencefalografia/instrumentação , Feminino , Humanos , Masculino , Distribuição Aleatória , Tempo de Reação/fisiologia , Percepção Espacial/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...