Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 157(20): 204202, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36456239

RESUMO

We have previously demonstrated that in the context of two-dimensional (2D) coherent electronic spectroscopy measured by phase modulation and phase-sensitive detection, an incoherent nonlinear response due to pairs of photoexcitations produced via linear excitation pathways contributes to the measured signal as an unexpected background [Grégoire et al., J. Chem. Phys. 147, 114201 (2017)]. Here, we simulate the effect of such incoherent population mixing in the photocurrent signal collected from a GaAs solar cell by acting externally on the transimpedance amplifier circuit used for phase-sensitive detection, and we identify an effective strategy to recognize the presence of incoherent population mixing in 2D data. While we find that incoherent mixing is reflected by the crosstalk between the linear amplitudes at the two time-delay variables in the four-pulse excitation sequence, we do not observe any strict phase correlations between the coherent and incoherent contributions, as expected from modeling of a simple system.

2.
Sci Adv ; 7(50): eabi5197, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34890231

RESUMO

Frenkel excitons are unequivocally responsible for the optical properties of organic semiconductors and are predicted to form bound exciton pairs (biexcitons). These are key intermediates, ubiquitous in many photophysical processes such as the exciton bimolecular annihilation dynamics in such systems. Because of their spectral ambiguity, there has been, to date, only scant direct evidence of bound biexcitons. By using nonlinear coherent spectroscopy, we identify here bound biexcitons in a model polymeric semiconductor. We find, unexpectedly, that excitons with interchain vibronic dispersion reveal intrachain biexciton correlations and vice versa. Moreover, using a Frenkel exciton model, we relate the biexciton binding energy to molecular parameters quantified by quantum chemistry, including the magnitude and sign of the exciton-exciton interaction the intersite hopping energies. Therefore, our work promises general insights into the many-body electronic structure in polymeric semiconductors and beyond, e.g., other excitonic systems such as organic semiconductor crystals, molecular aggregates, photosynthetic light-harvesting complexes, or DNA.

3.
Adv Mater ; 32(47): e2005241, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33089554

RESUMO

The relation of phase morphology and solid-state microstructure with organic photovoltaic (OPV) device performance has intensely been investigated over the last twenty years. While it has been established that a combination of donor:acceptor intermixing and presence of relatively phase-pure donor and acceptor domains is needed to get an optimum compromise between charge generation and charge transport/charge extraction, a quantitative picture of how much intermixing is needed is still lacking. This is mainly due to the difficulty in quantitatively analyzing the intermixed phase, which generally is amorphous. Here, fast scanning calorimetry, which allows measurement of device-relevant thin films (<200 nm thickness), is exploited to deduce the precise composition of the intermixed phase in bulk-heterojunction structures. The power of fast scanning calorimetry is illustrated by considering two polymer:fullerene model systems. Somewhat surprisingly, it is found that a relatively small fraction (<15 wt%) of an acceptor in the intermixed amorphous phase leads to efficient charge generation. In contrast, charge transport can only be sustained in blends with a significant amount of the acceptor in the intermixed phase (in this case: ≈58 wt%). This example shows that fast scanning calorimetry is an important tool for establishing a complete compositional characterization of organic bulk heterojunctions. Hence, it will be critical in advancing quantitative morphology-function models that allow for the rational design of these devices, and in delivering insights in, for example, solar cell degradation mechanisms via phase separation, especially for more complex high-performing systems such as nonfullerene acceptor:polymer bulk heterojunctions.

4.
J Phys Chem B ; 116(48): 14107-14, 2012 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-23106168

RESUMO

We have studied the photophysical properties of a tin(IV) phthalocyanine which coordinates two myristate groups through their carboxylate functionalities in a cis disposition at the tin center. Such a coordination mode, anisobidentate through the same side of the macrocycle, makes this phthalocyanine acquire a capped or half-domed shape. This bis myristate tin(IV) molecule shows an intersystem crossing channel which populates the triplet manifold with high efficiency and with a time constant of 300 ps, about an order of magnitude faster than planar phthalocyanines, including some previously reported tin(IV) phthalocyanines. For comparison purposes, we also include the description of a planar silicon(IV) phthalocyanine that keeps the more common stereochemistry, of trans type, with the same axial myristate groups. The characterization of these systems included steady state and time-resolved spectroscopy through femtosecond fluorescence up-conversion and transient absorption. We also studied the initial S(n) → S(1) internal conversion dynamics when these compounds are excited to upper states with 387.5 nm light. In addition, we include measurements of the rate for singlet oxygen production through the formation of an ESR-active adduct in aerated solutions. Such measurements indicate that, associated to its photophysics, the tin(IV) phthalocyanine produces (1)O(2) with an efficiency significantly larger than the silicon(IV) counterpart, making it an interesting option for sensitization applications. Finally, we performed excited state calculations at the TD-DFT level which describe the effects of the reduced symmetry together with the state ordering and indicate the presence of near dark intermediate states between the Q and B transitions for both of these macrocycles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...