Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 7(5): 4352-4362, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35155928

RESUMO

The conductivity and the state of the surface of supports are of vital importance for metallization via electrodeposition. In this study, we show that the metallization of a carbon fiber-reinforced polymer (CFRP) can be carried out directly if the intermediate graphene oxide (GO) layer is chemically reduced on the CFRP surface. Notably, this approach utilizing only the chemically reduced GO as a conductive support allows us to obtain insights into the interaction of rGO and the electrodeposited metal. Our study reveals that under the same contact current experimental conditions, the electrodeposition of Cu and Ni on rGO follows significantly different deposition modes, resulting in the formation of three-dimensional (3D) and free-standing metallic foils, respectively. Considering that Ni adsorption energy is larger than Ni cohesive energy, it is expected that the adhesion of Ni on rGO@CFRP is enhanced compared to Cu. In contrast, the adhesion of deposited Ni is reduced, suggesting diffusion of H+ between rGO and CFRP, which promotes the hydrogen evolution reaction (HER) and results in the formation of free-standing Ni foils. We ascribe this phenomenon to the unique properties of rGO and the nature of Cu and Ni deposition from electrolytic baths. In the latter, the high adsorption energy of Ni on defective rGO along with HER is the key factor for the formation of the porous layer and free-standing foils.

2.
Phys Chem Chem Phys ; 20(35): 22698-22709, 2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-30137091

RESUMO

The increasing energy demands of modern society require a deep understanding of the properties of energy storage materials, as well as the tuning of their performance. We show that the capacitance of graphene oxide (GO) can be precisely tuned using a simple electrochemical reduction route. In situ resistance measurements, in combination with cyclic voltammetry measurements and Raman spectroscopy, have shown that upon reduction GO is irreversibly deoxygenated, which is further accompanied by structural ordering and an increase in electrical conductivity. The capacitance is maximized when the concentration of oxygen functional groups is properly balanced with the conductivity. Any further reduction and deoxygenation leads to a gradual loss of capacitance. The observed trend is independent of the preparation route and the exact chemical and structural properties of GO. It is proposed that an improvement in the capacitive properties of any GO can be achieved by optimization of its reduction conditions.

3.
Phys Chem Chem Phys ; 19(20): 13281-13293, 2017 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-28492661

RESUMO

H2 production via water electrolysis plays an important role in hydrogen economy. Hence, novel cheap electrocatalysts for the hydrogen evolution reaction (HER) are constantly needed. Here, we describe a simple method for the preparation of composite catalysts for H2 evolution, consisting in simultaneous reduction of the graphene oxide film, and electrochemical deposition of Ni on its surface. The obtained composites (Ni@rGO), compared to pure electrodeposited Ni, show an improved electrocatalytic activity towards HER in alkaline media. We found that the activity of the Ni@rGO catalysts depends on the surface composition (Ni vs. C mole ratio) and on the level of structural disorder of the rGO support. We suggest that HER activity is improved via Hads spillover from the Ni particles to the rGO support, where quick recombination to molecular hydrogen is favored. A deeper insight into such a mechanism of H2 production was achieved by kinetic Monte-Carlo simulations. These simulations enabled the reproduction of experimentally observed trends under the assumption that the support can act as a Hads acceptor. We expect that the proposed procedure for the production of novel HER catalysts could be generalized and lead to the development of a new generation of HER catalysts by tailoring the catalyst/support interface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...