Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Neuroimage ; 277: 120231, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37330025

RESUMO

Estimating structural connectivity from diffusion-weighted magnetic resonance imaging is a challenging task, partly due to the presence of false-positive connections and the misestimation of connection weights. Building on previous efforts, the MICCAI-CDMRI Diffusion-Simulated Connectivity (DiSCo) challenge was carried out to evaluate state-of-the-art connectivity methods using novel large-scale numerical phantoms. The diffusion signal for the phantoms was obtained from Monte Carlo simulations. The results of the challenge suggest that methods selected by the 14 teams participating in the challenge can provide high correlations between estimated and ground-truth connectivity weights, in complex numerical environments. Additionally, the methods used by the participating teams were able to accurately identify the binary connectivity of the numerical dataset. However, specific false positive and false negative connections were consistently estimated across all methods. Although the challenge dataset doesn't capture the complexity of a real brain, it provided unique data with known macrostructure and microstructure ground-truth properties to facilitate the development of connectivity estimation methods.


Assuntos
Imagem de Difusão por Ressonância Magnética , Processamento de Imagem Assistida por Computador , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Método de Monte Carlo , Imagens de Fantasmas
2.
Toxicology ; 493: 153554, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37236336

RESUMO

DDT, a persistent organic pollutant, remains affecting human health worldwide. DDT and its most persistent metabolite (p,p'-DDE) negatively affect the immune response regulation and mechanisms involved in protecting against pathogens Such metabolite decreases the capability to limit intracellular growth of Mycobacterium microti and yeast. However, the effect on unstimulated (M0) and anti-inflammatory macrophages (M2) has been evaluated scanty. Herein, we evaluated the impact of p,p'-DDE at environmentally relevant concentrations (0.125, 1.25, 2.5, and 5 µg/mL) on bone marrow-derived macrophages stimulated with IFNγ+LPS to M1 or with IL-4 +IL-13 to M2. Thus we study whether the p,p'-DDE induces M0 to a specific phenotype or modulates activation of the macrophage phenotypes and explains, at least partly, the reported effects of p,p'-DDE on the M1 function. The p,p'-DDE did not affect the cell viability of M0 or the macrophage phenotypes. In M1, the p,p'-DDE decreased NO•- production and IL-1ß secretion, but increasing cellular ROS and mitochondrial O2•-, but did not alter iNOS, TNF-α, MHCII, and CD86 protein expression nor affect M2 markers arginase activity, TGF-ß1, and CD206; p,p'-DDE, did not affect marker expression in M0 or M2, supporting that its effects on M1 parameters are not dependent on M0 nor M2 modulation. The decreasing of NO•- production by the p,p'-DDE without altering iNOS levels, Arginase activity, or TNF-α, but increasing cellular ROS and mitochondrial O2 suggests that p,p'-DDE interferes with the iNOS function but not with its transcription. The p,p'-DDE decreasing of IL-1ß secretion, without any effect on TNF-α, suggest that an alteration of specific targets involved in IL-1ß secretion may be affected and related to ROS induction. The p,p'-DDE effect on iNOS function and the IL-1ß secretion process, as the NLRP3 activation, deserves further study.


Assuntos
Diclorodifenil Dicloroetileno , Macrófagos , Animais , Humanos , Camundongos , Arginase/genética , Arginase/metabolismo , Arginase/farmacologia , DDT/metabolismo , DDT/farmacologia , Diclorodifenil Dicloroetileno/toxicidade , Diclorodifenil Dicloroetileno/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos Endogâmicos BALB C , Fenótipo , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/genética
3.
Bot Stud ; 63(1): 11, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35384614

RESUMO

BACKGROUND: Recruitment after disturbance events depends on many factors including the environmental conditions of the affected area and the vegetation that could potentially grow in such affected areas. To understand the regeneration characteristics that occurs in temperate forests, we evaluated differences in the number of seedlings from trees and shrubs along an altitudinal gradient in Sierra Norte of Oaxaca, Mexico in different biological, climatic, edaphic, light, topographic, and disturbance regimes. Here, we aimed to test the hypothesis that the environmental disturbances influence on recruitment (positive or adverse influence). We sampled the vegetation to obtain recruitment and adult data, and species composition. RESULTS: We identified three disturbance regimes: areas affected by forest harvesting, areas exposed to pest management, and undisturbed areas. We identified 29 species of trees and shrubs (9 species of the genus Pinus, 1 species of the genus Abies, 10 species of the genus Quercus, and 9 of other species of broadleaf). We found that both environmental conditions and disturbances influence the recruitment of vegetation in the study area. In particular, disturbances had a positive influence on the regeneration of oak and other broadleaf species by increasing the number of seedlings, and a negative influence on the regeneration of conifers by decreasing the recruitment. Because the recruitment of conifers is more likely in undisturbed areas (sites over 3050 m). CONCLUSIONS: Environmental factors and anthropogenic disturbances can alter the recruitment of forests. Consequently, knowing which factors are key for the recruitment of vegetation is fundamental for decision-making processes. This is particularly relevant in areas as the one in this study because it provides knowledge to local people on vegetation recovery for a proper management of their biological resources.

4.
Biotechnol Prog ; 36(3): e2970, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31989790

RESUMO

Protein therapeutics, also known as biologics, are currently manufactured at centralized facilities according to rigorous protocols. The manufacturing process takes months and the delivery of the biological products needs a cold chain. This makes it less responsive to rapid changes in demand. Here, we report on technology application for on-demand biologics manufacturing (Bio-MOD) that can produce safe and effective biologics from cell-free systems at the point of care without the current challenges of long-term storage and cold-chain delivery. The objective of the current study is to establish proof-of-concept safety and efficacy of Bio-MOD-manufactured granulocyte colony-stimulating factor (G-CSF) in a mouse model of total body irradiation at a dose estimated to induce 30% lethality within the first 30 days postexposure. To illustrate on-demand Bio-MOD production feasibility, histidine-tagged G-CSF was manufactured daily under good manufacturing practice-like conditions prior to administration over a 16-day period. Bio-MOD-manufactured G-CSF improved 30-day survival when compared with saline alone (p = .073). In addition to accelerating recovery from neutropenia, the platelet and hemoglobin nadirs were significantly higher in G-CSF-treated animals compared with saline-treated animals (p < .05). The results of this study demonstrate the feasibility of consistently manufacturing safe and effective on-demand biologics suitable for real-time release.


Assuntos
Produtos Biológicos/farmacologia , Armazenamento de Medicamentos , Fator Estimulador de Colônias de Granulócitos/farmacologia , Neutropenia/tratamento farmacológico , Animais , Plaquetas/efeitos dos fármacos , Sistema Livre de Células , Modelos Animais de Doenças , Fator Estimulador de Colônias de Granulócitos/biossíntese , Hemoglobinas/efeitos dos fármacos , Histidina/biossíntese , Histidina/química , Humanos , Camundongos , Neutropenia/sangue , Neutropenia/etiologia , Neutropenia/patologia , Irradiação Corporal Total/efeitos adversos
5.
Anal Chem ; 91(17): 11004-11012, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31361950

RESUMO

As nonbiodegradable plastics continue to pollute our land and oceans, countries are starting to ban the use of single-use plastics. In this paper, we demonstrated the fabrication of wood-based microfluidic devices and their adaptability for single-use, point-of-care (POC) applications. These devices are made from easily sourced renewable materials for fabrication while exhibiting all the advantages of plastic devices without the problem of nonbiodegradable waste and cost. To build these wood devices, we utilized laser engraving and traditional mechanical methods and have adapted specific surface coatings to counter the wicking effect of wood. To demonstrate their versatility, wood microfluidic devices were adapted for (i) surface plasmon coupled enhancement (SPCE) of fluorescence for detection of proteins, (ii) T-/Y-geometry microfluidic channel mixers, and (iii) devices for rapid detection of microbial contamination. These provide proof of concept for the use of wooden platforms for POC applications. In this study, we measured the fluorescence intensities of recombinant green fluorescent protein (GFP) standards (ranging from 1.5-25 ng/µL) and 6XHis-G-CSF (ranging from 0.1-100 ng/µL) expressed in cell-free translation systems. All tested devices perform as well as or better than their plastic counterparts.

7.
Biotechnol Bioeng ; 116(4): 870-881, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30450616

RESUMO

Biopharmaceutical separations require tremendous amounts of optimization to achieve acceptable product purity. Typically, large volumes of reagents and biological materials are needed for testing different parameters, thus adding to the expense of biopharmaceutical process development. This study demonstrates a versatile and customizable microscale column (µCol) for biopharmaceutical separations using immobilized metal affinity chromatography (IMAC) as an example application to identify key parameters. µCols have excellent precision, efficiency, and reproducibility, can accommodate any affinity, ion-exchange or size-exclusion-based resin and are compatible with any high-performance liquid chromatography (HPLC) system. µCols reduce reagent amounts, provide comparable purification performance and high-throughput, and are easy to automate compared with current conventional resin columns. We provide a detailed description of the fabrication methods, resin packing methods, and µCol validation experiments using a conventional HPLC system. Finite element modeling using COMSOL Multiphysics was used to validate the experimental performance of the µCols. In this study, µCols were used for improving the purification achieved for granulocyte colony stimulating factor (G-CSF) expressed using a cell-free CHO in vitro translation (IVT) system and were compared to a conventional 1 ml IMAC column. Experimental data revealed comparable purity with a 10-fold reduction in the amount of buffer, resin, and purification time for the µCols compared with conventional columns for similar protein yields.


Assuntos
Cromatografia de Afinidade/instrumentação , Cromatografia Líquida de Alta Pressão/instrumentação , Fator Estimulador de Colônias de Granulócitos/isolamento & purificação , Algoritmos , Animais , Células CHO , Cromatografia de Afinidade/economia , Cromatografia Líquida de Alta Pressão/economia , Cricetulus , Desenho de Equipamento
8.
J Biomed Mater Res B Appl Biomater ; 105(7): 2019-2026, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-27376876

RESUMO

The effect of mechanical fatigue on the corrosion resistance of medical devices has been a concern for devices that experience significant fatigue during their lifespan and devices made from metallic alloys. The Food and Drug Administration had recommended in some instances for corrosion testing to be performed on post-fatigued devices [Non-clinical tests and recommended labeling for intravascular stents and associated delivery systems: guidance for industry and FDA staff. 2005: Food and Drug Administration, Center for Devices and Radiological Health], although the need for this has been debated [Nagaraja S, et al., J Biomed Mater Res Part B: Appl Biomater 2016, 8.] This study seeks to evaluate the effect of fatigue on the corrosion resistance of 5 different materials commonly used in medical devices: 316 LVM stainless steel, MP35N cobalt chromium, electropolished nitinol, mechanically polished nitinol, and black oxide nitinol. Prior to corrosion testing per ASTM F2129, wires of each alloy were split into subgroups and subjected to either nothing (that is, as received); high strain fatigue for less than 8 min; short-term phosphate buffered saline (PBS) soak for less than 8 min; low strain fatigue for 8 days; or long-term PBS soak for 8 days. Results from corrosion testing showed that the rest potential trended to an equilibrium potential with increasing time in PBS and that there was no statistical (p > 0.05) difference in breakdown potential between the fatigued and matching PBS soak groups for 9 out of 10 test conditions. Our results suggest that under these nonfretting conditions, corrosion susceptibility as measured by breakdown potential per ASTM F2129 was unaffected by the fatigue condition. 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2019-2026, 2017.


Assuntos
Ligas/química , Teste de Materiais , Estresse Mecânico , Corrosão
9.
J Mater Eng Perform ; 24(12): 4966-4974, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30197493

RESUMO

Given its relatively simple setup and ability to produce results quickly, rotary bend fatigue testing is becoming commonplace in the medical device industry and is the subject of a new standard test method ASTM E2948-14. Although some research has been conducted to determine if results differ for different rotary bend fatigue test setups or test speeds, these parameters have not been extensively studied together. In this work, we investigate the effects of these two parameters on the fatigue life of three commonly used medical device alloys (ASTM F2063 nitinol, ASTM F138 stainless steel, and ASTM F1058 cobalt chromium). Results with three different rotary bend fatigue test setups revealed no difference in fatigue life among those setups. Increasing test speed, however, between 100 and 35,000 RPM led to an increased fatigue life for all three alloys studied (average number of cycles to fracture increased between 2.0 and 5.1 times between slowest and fastest test speed). Supplemental uniaxial tension tests of stainless steel wire at varying strain rates showed a strain rate dependence in the mechanical response which could in part explain the increased fatigue life at faster test speeds. How exactly strain rate dependence might affect the fatigue properties of different alloys at different alternating strain values requires further study. Given the difference in loading rates between benchtop fatigue tests and in vivo deformations, the potential for strain rate dependence should be considered when designing durability tests for medical devices and in extrapolating results of those tests to in vivo performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...