Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(17): e2303664121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38621124

RESUMO

Brain-derived neurotrophic factor (BDNF) plays a critical role in synaptic physiology, as well as mechanisms underlying various neuropsychiatric diseases and their treatment. Despite its clear physiological role and disease relevance, BDNF's function at the presynaptic terminal, a fundamental unit of neurotransmission, remains poorly understood. In this study, we evaluated single synapse dynamics using optical imaging techniques in hippocampal cell cultures. We find that exogenous BDNF selectively increases evoked excitatory neurotransmission without affecting spontaneous neurotransmission. However, acutely blocking endogenous BDNF has no effect on evoked or spontaneous release, demonstrating that different approaches to studying BDNF may yield different results. When we suppressed BDNF-Tropomyosin receptor kinase B (TrkB) activity chronically over a period of days to weeks using a mouse line enabling conditional knockout of TrkB, we found that evoked glutamate release was significantly decreased while spontaneous release remained unchanged. Moreover, chronic blockade of BDNF-TrkB activity selectively downscales evoked calcium transients without affecting spontaneous calcium events. Via pharmacological blockade by voltage-gated calcium channel (VGCC) selective blockers, we found that the changes in evoked calcium transients are mediated by the P/Q subtype of VGCCs. These results suggest that BDNF-TrkB activity increases presynaptic VGCC activity to selectively increase evoked glutamate release.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Cálcio , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cálcio/metabolismo , Transmissão Sináptica/fisiologia , Sinapses/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Cálcio da Dieta , Receptor trkB/genética , Receptor trkB/metabolismo , Glutamatos/metabolismo
3.
STAR Protoc ; 4(1): 102080, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36853692

RESUMO

Visualizing the nano-organization of the synapse is fundamental to elucidating the structure-function relationship of the nervous system. The advent of super-resolution microscopy provides a tool to assess and quantify the dynamic organization of numerous proteins at the synapse. Here we present a protocol assessing inhibitory synapse scaffold protein, gephyrin, in rat primary hippocampal cultures using dSTORM microscopy. We delineate the steps for artemisinin treatment, immunocytochemistry, dSTORM image acquisition, single-molecule localization, and the analysis of synaptic scaffold protein dynamics. For complete details on the use and execution of this protocol, please refer to Guzikowski and Kavalali (2022).1.


Assuntos
Neurônios , Sinapses , Ratos , Animais , Neurônios/metabolismo , Sinapses/metabolismo , Microscopia/métodos , Hipocampo/metabolismo
4.
Cell Rep ; 40(6): 111172, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35947950

RESUMO

Earlier studies delineated the precise arrangement of proteins that drive neurotransmitter release and postsynaptic signaling at excitatory synapses. However, spatial organization of neurotransmission at inhibitory synapses remains unclear. Here, we took advantage of the molecularly specific interaction of antimalarial artemisinins and the inhibitory synapse scaffold protein, gephyrin, to probe the functional organization of gamma-aminobutyric acid A receptor (GABAAR)-mediated neurotransmission in central synapses. Short-term application of artemisinins severely contracts the size and density of gephyrin and GABAaR γ2 subunit clusters. This size contraction elicits a neuronal activity-independent increase in Bdnf expression due to a specific reduction in GABAergic spontaneous, but not evoked, neurotransmission. The same functional effect could be mimicked by disruption of microtubules that link gephyrin to the neuronal cytoskeleton. These results suggest that the GABAergic postsynaptic apparatus possesses a concentric center-surround organization, where the periphery of gephyrin clusters selectively maintains spontaneous GABAergic neurotransmission facilitating its autonomous function regulating Bdnf expression.


Assuntos
Artemisininas , Receptores de GABA-A , Artemisininas/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Hipocampo/metabolismo , Receptores de GABA-A/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia
5.
Cell Rep ; 38(3): 110255, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35045279

RESUMO

Inhibition of neurotransmitter release by neurotransmitter substances constitutes a fundamental means of neuromodulation. In contrast to well-delineated mechanisms that underlie inhibition of evoked release via suppression of voltage-gated Ca2+ channels, processes that underlie neuromodulatory inhibition of spontaneous release remain unclear. Here, we interrogated inhibition of spontaneous glutamate and GABA release by presynaptic metabotropic GABAB receptors. Our findings show that this inhibition relies on Gßγ subunit action at the membrane, and it is largely independent of presynaptic Ca2+ signaling for both forms of release. In the case of spontaneous glutamate release, inhibition requires Gßγ interaction with the C terminus of the key fusion machinery component SNAP25, and it is modulated by synaptotagmin-1. Inhibition of spontaneous GABA release, on the other hand, is independent of these pathways and likely requires alternative Gßγ targets at the presynaptic terminal.


Assuntos
Neurotransmissores/metabolismo , Terminações Pré-Sinápticas/metabolismo , Receptores de GABA-B/metabolismo , Transmissão Sináptica/fisiologia , Animais , Feminino , Ácido Glutâmico/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Ácido gama-Aminobutírico/metabolismo
6.
Front Synaptic Neurosci ; 13: 796498, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35002671

RESUMO

Synapses maintain synchronous, asynchronous, and spontaneous modes of neurotransmission through distinct molecular and biochemical pathways. Traditionally a single synapse was assumed to have a homogeneous organization of molecular components both at the active zone and post-synaptically. However, recent advancements in experimental tools and the further elucidation of the physiological significance of distinct forms of release have challenged this notion. In comparison to rapid evoked release, the physiological significance of both spontaneous and asynchronous neurotransmission has only recently been considered in parallel with synaptic structural organization. Active zone nanostructure aligns with postsynaptic nanostructure creating a precise trans-synaptic alignment of release sites and receptors shaping synaptic efficacy, determining neurotransmission reliability, and tuning plasticity. This review will discuss how studies delineating synaptic nanostructure create a picture of a molecularly heterogeneous active zone tuned to distinct forms of release that may dictate diverse synaptic functional outputs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...