Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
BMC Plant Biol ; 24(1): 180, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459432

RESUMO

BACKGROUND: Primary response genes play a pivotal role in translating short-lived stress signals into sustained adaptive responses. In this study, we investigated the involvement of ATL80, an E3 ubiquitin ligase, in the dynamics of gene expression following water deprivation stress. We observed that ATL80 is rapidly activated within minutes of water deprivation stress perception, reaching peak expression around 60 min before gradually declining. ATL80, despite its post-translational regulation role, emerged as a key player in modulating early gene expression responses to water deprivation stress. RESULTS: The impact of ATL80 on gene expression was assessed using a time-course microarray analysis (0, 15, 30, 60, and 120 min), revealing a burst of differentially expressed genes, many of which were associated with various stress responses. In addition, the diversity of early modulation of gene expression in response to water deprivation stress was significantly abolished in the atl80 mutant compared to wild-type plants. A subset of 73 genes that exhibited a similar expression pattern to ATL80 was identified. Among them, several are linked to stress responses, including ERF/AP2 and WRKY transcription factors, calcium signaling genes, MAP kinases, and signaling peptides. Promoter analysis predicts enrichment of binding sites for CAMTA1 and CAMTA5, which are known regulators of rapid stress responses. Furthermore, we have identified a group of differentially expressed ERF/AP2 transcription factors, proteins associated with folding and refolding, as well as pinpointed core module genes which are known to play roles in retrograde signaling pathways that cross-referenced with the early ATL80 transcriptome. CONCLUSIONS: Based on these findings, we propose that ATL80 may target one or more components within the retrograde signaling pathways for degradation. In essence, ATL80 serves as a bridge connecting these signaling pathways and effectively functions as an alarm signal.


Assuntos
Ubiquitina-Proteína Ligases , Privação de Água , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Fatores de Transcrição/genética , Desidratação , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética
3.
Sci Data ; 11(1): 84, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238306

RESUMO

Based on more than 11 billion geolocated cell phone records from 33 million different devices, daily mobility networks were constructed over a 15-month period for Greater Mexico City, one of the largest and most diverse metropolitan areas globally. The time frame considered spans the entire year of 2020 and the first three months of 2021, enabling the analysis of population movement dynamics before, during, and after the COVID-19 health contingency. The nodes within the 456 networks represent the basic statistical geographic areas (AGEBs) established by the National Institute of Statistics, Geography, and Informatics (INEGI) in Mexico. This framework facilitates the integration of mobility data with numerous indicators provided by INEGI. Edges connecting these nodes represent movement between AGEBs, with edge weights indicating the volume of trips from one AGEB to another. This extensive dataset allows researchers to uncover travel patterns, cross-reference data with socio-economic indicators, and conduct segregation studies, among other potential analyses.

4.
Elife ; 122023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37498057

RESUMO

Over 200 different SARS-CoV-2 lineages have been observed in Mexico by November 2021. To investigate lineage replacement dynamics, we applied a phylodynamic approach and explored the evolutionary trajectories of five dominant lineages that circulated during the first year of local transmission. For most lineages, peaks in sampling frequencies coincided with different epidemiological waves of infection in Mexico. Lineages B.1.1.222 and B.1.1.519 exhibited similar dynamics, constituting clades that likely originated in Mexico and persisted for >12 months. Lineages B.1.1.7, P.1 and B.1.617.2 also displayed similar dynamics, characterized by multiple introduction events leading to a few successful extended local transmission chains that persisted for several months. For the largest B.1.617.2 clades, we further explored viral lineage movements across Mexico. Many clades were located within the south region of the country, suggesting that this area played a key role in the spread of SARS-CoV-2 in Mexico.


Assuntos
COVID-19 , Humanos , México/epidemiologia , COVID-19/epidemiologia , SARS-CoV-2/genética , Evolução Biológica , Filogenia
5.
Sci Rep ; 13(1): 8566, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37237051

RESUMO

Human mobility networks are widely used for diverse studies in geography, sociology, and economics. In these networks, nodes usually represent places or regions and links refer to movement between them. They become essential when studying the spread of a virus, the planning of transit, or society's local and global structures. Therefore, the construction and analysis of human mobility networks are crucial for a vast number of real-life applications. This work presents a collection of networks that describe the human travel patterns between municipalities in Mexico in the 2020-2021 period. Using anonymized mobile location data, we constructed directed, weighted networks representing the volume of travels between municipalities. We analysed changes in global, local, and mesoscale network features. We observe that changes in these features are associated with factors such as COVID-19 restrictions and population size. In general, the implementation of restrictions at the start of the COVID-19 pandemic in early 2020, induced more intense changes in network features than later events, which had a less notable impact in network features. These networks will result very useful for researchers and decision-makers in the areas of transportation, infrastructure planning, epidemic control and network science at large.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , Pandemias , México/epidemiologia , Viagem , Meios de Transporte
6.
Int J Mol Sci ; 22(6)2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33802796

RESUMO

RNA-binding proteins (RBPs) are key elements involved in post-transcriptional regulation. Ataxin-2 (ATXN2) is an evolutionarily conserved RBP protein, whose function has been studied in several model organisms, from Saccharomyces cerevisiae to the Homo sapiens. ATXN2 interacts with poly(A) binding proteins (PABP) and binds to specific sequences at the 3'UTR of target mRNAs to stabilize them. CTC-Interacting Domain3 (CID3) and CID4 are two ATXN2 orthologs present in plant genomes whose function is unknown. In the present study, phenotypical and transcriptome profiling were used to examine the role of CID3 and CID4 in Arabidopsis thaliana. We found that they act redundantly to influence pathways throughout the life cycle. cid3cid4 double mutant showed a delay in flowering time and a reduced rosette size. Transcriptome profiling revealed that key factors that promote floral transition and floral meristem identity were downregulated in cid3cid4 whereas the flowering repressor FLOWERING LOCUS C (FLC) was upregulated. Expression of key factors in the photoperiodic regulation of flowering and circadian clock pathways, were also altered in cid3cid4, as well as the expression of several transcription factors and miRNAs encoding genes involved in leaf growth dynamics. These findings reveal that ATXN2 orthologs may have a role in developmental pathways throughout the life cycle of plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/efeitos da radiação , Ataxina-2/química , Luz , Proteínas de Ligação a RNA/metabolismo , Homologia de Sequência de Aminoácidos , Proteínas de Arabidopsis/genética , Regulação para Baixo/genética , Flores/genética , Flores/fisiologia , Flores/efeitos da radiação , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Mutação/genética , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Ligação a RNA/genética , Transcriptoma/genética
7.
Plant J ; 104(2): 474-492, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33164265

RESUMO

Multigene families in plants expanded from ancestral genes via gene duplication mechanisms constitute a significant fraction of the coding genome. Although most duplicated genes are lost over time, many are retained in the genome. Clusters of tandemly arrayed genes are commonly found in the plant genome where they can promote expansion of gene families. In the present study, promoter fusion to the GUS reporter gene was used to examine the promoter architecture of duplicated E3 ligase genes that are part of group C in the Arabidopsis thaliana ATL family. Acquisition of gene expression by AtATL78, possibly generated from defective AtATL81 expression, is described. AtATL78 expression was purportedly enhanced by insertion of a TATA box within the core promoter region after a short tandem duplication that occurred during evolution of Brassicaceae lineages. This gene is associated with an adaptation to drought tolerance of A. thaliana. These findings also suggest duplicated genes could serve as a reservoir of tacit genetic information, and expression of these duplicated genes is activated upon acquisition of core promoter sequences. Remarkably, drought transcriptome profiling in response to rehydration suggests that ATL78-dependent gene expression predominantly affects genes with root-specific activities.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/enzimologia , Genoma de Planta/genética , Ubiquitina-Proteína Ligases/genética , Adaptação Fisiológica , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Secas , Duplicação Gênica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Família Multigênica , Especificidade de Órgãos , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Regiões Promotoras Genéticas/genética , Estresse Fisiológico , Ubiquitina-Proteína Ligases/metabolismo
8.
Plant Sci ; 280: 175-186, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30823995

RESUMO

The plant hormone ethylene induces auxin biosynthesis and transport and modulates root growth and branching. However, its function on root stem cells and the identity of interacting factors for the control of meristem activity remains unclear. Genetic analysis for primary root growth in wild-type (WT) Arabidopsis thaliana seedlings and ethylene-related mutants showed that the loss-of-function of CONSTITUTIVE TRIPLE RESPONSE1 (CTR1) inhibits cell division and elongation. This phenotype is associated with an increase in the expression of the auxin transporter PIN2 and a drastic decrease in the expression of key factors for stem cell niche maintenance such as PLETHORA1, SHORT ROOT and SCARECROW. While the root stem cell niche is affected in ctr1 mutants, its maintenance is severely compromised in the ctr1-1eir1-1(pin2) double mutant, in which an evident loss of proliferative capacity of the meristematic cells leads to a fully differentiated root meristem shortly after germination. Root traits affected in ctr1-1 mutants could be restored in ctr1-1ein2-1 double mutants. These results reveal that ethylene perception via CTR1 and EIN2 in the root modulates the proliferative capacity of root stem cells via affecting the expression of genes involved in the two major pathways, AUX-PIN-PLT and SCR-SHR, which are key factors for proper root stem cell niche maintenance.


Assuntos
Proteínas de Arabidopsis/metabolismo , Plântula/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Etilenos/metabolismo , Meristema/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Transdução de Sinais/fisiologia
9.
PLoS One ; 13(8): e0203442, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30169501

RESUMO

E3 ubiquitin ligases of the ubiquitin proteasome system (UPS) mediate recognition of substrates and later transfer the ubiquitin (Ub). They are the most expanded components of the system. The Really Interesting New Gene (RING) domain contains 40-60 residues that are highly represented among E3 ubiquitin ligases. The Arabidopsis thaliana E3 ubiquitin ligases with a RING finger primarily contain RING-HC or RING-H2 type domains or less frequently RING-v, RING-C2, RING-D, RING-S/T and RING-G type domains. Our previous work on three E3 ubiquitin ligase families with a RING-H2 type domain, ATL, BTL, and CTL, suggested that a phylogenetic distribution based on the RING domain allowed for the creation a catalog of known domains or unknown conserved motifs. This work provided a useful and comprehensive view of particular families of RING E3 ubiquitin ligases. We updated the annotation of A. thaliana RING proteins and surveyed RING proteins from 30 species across eukaryotes. Based on domain architecture profile of the A. thaliana proteins, we catalogued 4711 RING finger proteins into 107 groups, including 66 previously described gene families or single genes and 36 novel families or undescribed genes. Forty-four groups were specific to a plant lineage while 41 groups consisted of proteins found in all eukaryotic species. Our present study updates the current classification of plant RING finger proteins and reiterates the importance of these proteins in plant growth and adaptation.


Assuntos
Proteínas de Plantas/genética , Domínios RING Finger/genética , Ubiquitina-Proteína Ligases/genética , Arabidopsis/genética , Filogenia , Complexo de Endopeptidases do Proteassoma/genética , Ubiquitina/genética
10.
J Am Heart Assoc ; 7(3)2018 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-29386205

RESUMO

BACKGROUND: The signals that determine atherosclerosis-specific DNA methylation profiles are only partially known. We previously identified a 29-bp DNA motif (differential methylation motif [DMM]) proximal to CpG islands (CGIs) that undergo demethylation in advanced human atheromas. Those data hinted that the DMM docks modifiers of DNA methylation and transcription. METHODS AND RESULTS: We sought to functionally characterize the DMM. We showed that the DMM overlaps with the RNA polymerase III-binding B box of Alu short interspersed nuclear elements and contains a DR2 nuclear receptor response element. Pointing to a possible functional role for an Alu DMM, CGIs proximal (<100 bp) to near-intact DMM-harboring Alu are significantly less methylated relative to CGIs proximal to degenerate DMM-harboring Alu or to DMM-devoid mammalian-wide interspersed repeat short interspersed nuclear elements in human arteries. As for DMM-binding factors, LXRB (liver X receptor ß) binds the DMM in a DR2-dependent fashion, and LXR (liver X receptor) agonists induce significant hypermethylation of the bulk of Alu in THP-1 cells. Furthermore, we describe 3 intergenic long noncoding RNAs that harbor a DMM, are under transcriptional control by LXR agonists, and are differentially expressed between normal and atherosclerotic human aortas. Notably, CGIs adjacent to those long noncoding RNAs tend to be hypomethylated in symptomatic relative to stable human atheromas. CONCLUSIONS: Collectively, the data suggest that a DMM is associated with 2 distinct methylation states: relatively low methylation of in cis CGIs and Alu element hypermethylation. Based on the known atheroprotective role of LXRs, we propose that LXR agonist-induced Alu hypermethylation, a landmark of atherosclerosis, is a compensatory rather than proatherogenic response.


Assuntos
Elementos Alu , Aterosclerose/genética , Ilhas de CpG , Metilação de DNA , Epigênese Genética , Receptores X do Fígado/metabolismo , Motivos de Nucleotídeos , Aterosclerose/metabolismo , Benzoatos/farmacologia , Benzilaminas/farmacologia , Sítios de Ligação , Metilação de DNA/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Perfilação da Expressão Gênica , Humanos , Receptores X do Fígado/agonistas , Receptores X do Fígado/genética , Ligação Proteica , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Células THP-1 , Técnicas do Sistema de Duplo-Híbrido
11.
PLoS One ; 13(1): e0190969, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29324855

RESUMO

RING ubiquitin E3 ligases enclose a RING domain for ubiquitin ligase activity and associated domains and/or conserved motifs outside the RING domain that collectively facilitate their classification and usually reveal some of key information related to mechanism of action. Here we describe a new family of E3 ligases that encodes a RING-H2 domain related in sequence to the ATL and BTL RING-H2 domains. This family, named CTL, encodes a motif designed as YEELL that expands 21 amino acids next to the RING-H2 domain that is present across most eukaryotic lineages. E3 ubiquitin ligase BIG BROTHER is a plant CTL that regulates organ size, and SUMO-targeted ubiquitin E3 ligase RNF111/ARKADIA is a vertebrate CTL. Basal animal and vertebrate, as well as fungi species, encode a single CTL gene that constraints the number of paralogs observed in vertebrates. Conversely, as previously described in ATL and BTL families in plants, CTL genes range from a single copy in green algae and 3 to 5 copies in basal species to 9 to 35 copies in angiosperms. Our analysis describes key structural features of a novel family of E3 ubiquitin ligases as an integral component of the set of core eukaryotic genes.


Assuntos
Motivos de Aminoácidos , Ubiquitina-Proteína Ligases/metabolismo , Sequência de Aminoácidos , Sequência Conservada , Células Eucarióticas , Íntrons , Filogenia , Homologia de Sequência de Aminoácidos , Spliceossomos/genética , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/classificação , Ubiquitina-Proteína Ligases/genética
12.
BMC Evol Biol ; 15: 195, 2015 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-26377114

RESUMO

BACKGROUND: Poly(A)-binding proteins (PABPs) are evolutionarily conserved proteins that have important functions in the regulation of translation and the control of mRNA stability in eukaryotes. Most PABPs encode a C-terminal domain known as the MLLE domain (previously PABC or CTC), which can mediate protein interactions. In earlier work we identified and predicted that four classes of MLLE-interacting proteins were present in Arabidopsis thaliana, which we named CID A, B, C, and D. These proteins encode transcription-activating domains (CID A), the Lsm and LsmAD domains of ataxin-2 (CID B), the CUE and small MutS-related domains (CID C), and two RNA recognition domains (CID D). We recently found that a novel class that lacks the LsmAD domain is present in CID B proteins. RESULTS: We extended our analysis to other classes of CIDs present in the viridiplantae. We found that novel variants also evolved in classes CID A and CID C. A specific transcription factor domain is present in a distinct lineage in class A, and a variant that lacks at least two distinct domains was also identified in a divergent lineage in class C. We did not detect any variants in Class D CIDs. This class often consists of four to six highly conserved RNA-binding proteins, which suggests that major redundancy is present in this class. CONCLUSIONS: CIDs are likely to operate as components of posttranscriptional regulatory assemblies. The evident diversification of CIDs may be neutral or may be important for plant adaptation to the environment and for acquisition of specific traits during evolution. The fact that CIDs subclasses are maintained in early lineages suggest that a presumed interference between duplicates was resolved, and a defined function for each subclass was achieved.


Assuntos
Evolução Molecular , Proteínas de Plantas/metabolismo , Plantas/classificação , Plantas/genética , Proteínas de Ligação a Poli(A)/metabolismo , Arabidopsis/genética , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Ligação a Poli(A)/química , Proteínas de Ligação a Poli(A)/genética , Estrutura Terciária de Proteína , Estabilidade de RNA , Viridiplantae/genética
13.
PLoS One ; 9(10): e109981, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25299159

RESUMO

In this study, we investigated the reverse transcriptase subunit of telomerase in the dimorphic fungus Ustilago maydis. This protein (Trt1) contains 1371 amino acids and all of the characteristic TERT motifs. Mutants created by disrupting trt1 had senescent traits, such as delayed growth, low replicative potential, and reduced survival, that were reminiscent of the traits observed in est2 budding yeast mutants. Telomerase activity was observed in wild-type fungus sporidia but not those of the disruption mutant. The introduction of a self-replicating plasmid expressing Trt1 into the mutant strain restored growth proficiency and replicative potential. Analyses of trt1 crosses in planta suggested that Trt1 is necessary for teliospore formation in homozygous disrupted diploids and that telomerase is haploinsufficient in heterozygous diploids. Additionally, terminal restriction fragment analysis in the progeny hinted at alternative survival mechanisms similar to those of budding yeast.


Assuntos
Telomerase/biossíntese , Telomerase/genética , Ustilago/enzimologia , Sequência de Aminoácidos , Replicação do DNA/genética , Diploide , Regulação Fúngica da Expressão Gênica , Esporos/genética , Telomerase/isolamento & purificação , Ustilago/genética , Ustilago/crescimento & desenvolvimento
14.
BMC Res Notes ; 7: 453, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25027299

RESUMO

BACKGROUND: Ataxin-2 is an evolutionarily conserved protein first identified in humans as responsible for spinocerebellar ataxia type 2 (SCA2). The molecular basis of SCA2 is the expansion of a polyglutamine tract in Ataxin-2, encoding a Lsm domain that may bind RNA and a PAM2 motif that enables interaction with the poly (A) binding protein. Although the association with SCA2 has been verified, a detailed molecular function for Ataxin-2 has not been established. RESULTS: We have undertaken a survey of Ataxin-2 proteins across all eukaryotic domains. In eukaryotes, except for vertebrates and land plants, a single ortholog was identified. Notably, with the exception of birds, two Ataxin-2 genes exist in vertebrates. Expansion was observed in land plants and a novel class lacking the LsmAD domain was identified. Large polyQ tracts appear limited to primates and insects of the orders Hymenoptera and Diptera. A common feature across Ataxin-2 orthologs is the presence of proline-rich motifs, formerly described in the human protein. CONCLUSION: Our analysis provides valuable information on the evolution and domain structure of Ataxin-2 proteins. Proline-rich motifs that may mediate protein interactions are widespread in Ataxin-2 proteins, but expansion of polyglutamine tracts associated with spinocerebellar ataxia type 2, is present only in primates, as well as some insects. Our analysis of Ataxin-2 proteins provides also a source to examine orthologs in a number of different species.


Assuntos
Invertebrados/genética , Proteínas do Tecido Nervoso/genética , Filogenia , Plantas/genética , Vertebrados/genética , Sequência de Aminoácidos , Animais , Ataxinas , Evolução Molecular , Humanos , Invertebrados/classificação , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/química , Peptídeos/química , Peptídeos/genética , Plantas/classificação , Domínios Proteicos Ricos em Prolina/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Homologia de Sequência de Aminoácidos , Vertebrados/classificação
15.
Plant Sci ; 215-216: 69-75, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24388516

RESUMO

Major components of the ubiquitin proteasome system are the enzymes that operate on the transfer of ubiquitin to selected target substrate, known as ubiquitin ligases. The RING finger is a domain that is present in key classes of ubiquitin ligases. This domain coordinates the interaction with a suitable E2 conjugase and the transfer of ubiquitin from the E2 to protein targets. Additional domains coupled to the same polypeptide are important for modulating the function of these ubiquitin ligases. Plants contain several types of E3 ubiquitin ligases that in many cases have expanded as multigene families. Some families are specific to the plant lineage, whereas others may have a common ancestor among plants and other eukaryotic lineages. Arabidopsis Tóxicos en Levadura (ATLs) and BCA2 zinc finger ATLs (BTLs) are two families of ubiquitin ligases that share some common structural features. These are intronless genes that encode a highly related RING finger domain, and yet during evolutionary history, their mode of gene expansion and function is rather different. In each of these two families, the co-occurrence of transmembrane helices or C2/C2 (BZF finger) domains with a selected variation on the RING finger has been subjected to strong selection pressure in order to preserve their unique domain architectures during evolution.


Assuntos
Arabidopsis/genética , Evolução Molecular , Genes de Plantas , Família Multigênica , Domínios RING Finger/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina/genética , Arabidopsis/química , Proteínas de Arabidopsis/genética , Filogenia , Complexo de Endopeptidases do Proteassoma , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/química
16.
Plant Mol Biol ; 84(4-5): 429-41, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24135966

RESUMO

Gene duplication events exert key functions on gene innovations during the evolution of the eukaryotic genomes. A large portion of the total gene content in plants arose from tandem duplications events, which often result in paralog genes with high sequence identity. Ubiquitin ligases or E3 enzymes are components of the ubiquitin proteasome system that function during the transfer of the ubiquitin molecule to the substrate. In plants, several E3s have expanded in their genomes as multigene families. To gain insight into the consequences of gene duplications on the expansion and diversification of E3s, we examined the evolutionary basis of a cluster of six genes, duplC-ATLs, which arose from segmental and tandem duplication events in Brassicaceae. The assessment of the expression suggested two patterns that are supported by lineage. While retention of expression domains was observed, an apparent absence or reduction of expression was also inferred. We found that two duplC-ATL genes underwent pseudogenization and that, in one case, gene expression is probably regained. Our findings provide insights into the evolution of gene families in plants, defining key events on the expansion of the Arabidopsis Tóxicos en Levadura family of E3 ligases.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Duplicação Gênica , Família Multigênica , Ubiquitina-Proteína Ligases/genética , Sequência de Aminoácidos , Arabidopsis/enzimologia , Proteínas de Arabidopsis/metabolismo , Sequência de Bases , Brassicaceae/classificação , Brassicaceae/enzimologia , Brassicaceae/genética , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Evolução Molecular , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Glucuronidase/genética , Glucuronidase/metabolismo , Histocitoquímica , Isoenzimas/genética , Isoenzimas/metabolismo , Dados de Sequência Molecular , Filogenia , Plantas Geneticamente Modificadas , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Sintenia , Ubiquitina-Proteína Ligases/classificação , Ubiquitina-Proteína Ligases/metabolismo
17.
BMC Plant Biol ; 13: 179, 2013 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-24228887

RESUMO

BACKGROUND: Introns located close to the 5' end of a gene or in the 5' untranslated region often exert positive effects on gene expression. This effect, known as intron-mediated enhancement (IME), has been observed in diverse eukaryotic organisms, including plants. The sequences involved in IME seem to be spread across the intron and function in an additive manner. The IMEter algorithm was developed to predict plant introns that may enhance gene expression. We have identified several plant members of the BTL class of E3s, which may have orthologs across eukaryotes, that contain a 5'UTR intron. The RING finger E3 ligases are key enzymes of the ubiquitination system that mediate the transfer of ubiquitin to substrates. RESULTS: In this study, we retrieved BTL sequences from several angiosperm species and found that 5'UTR introns showing a strong IMEter score were predicted, suggesting that they may be conserved by lineage. Promoter-GUS fusion lines were used to confirm the IME effect of these 5'UTR introns on gene expression. IMEter scores of BTLs were compared with the 5'UTR introns of two gene families MHX and polyubiquitin genes. CONCLUSIONS: Analysis performed in two Arabidopsis BTL E3 ligases genes indicated that the 5'UTR introns were essential for gene expression in all the tissues tested. Comparison of the average 5'UTR intron size on three gene families in ten angiosperm species suggests that a prevalent size for a 5'UTR intron is in the range of 600 nucleotides, and that the overall IMEter score within a gene family is preserved across several angiosperms. Our results indicated that gene expression dependent on a 5'UTR intron is an efficient regulatory mechanism in BTL E3 ligases that has been preserved throughout plant evolution.


Assuntos
Regiões 5' não Traduzidas/genética , Íntrons/genética , Plantas Geneticamente Modificadas/enzimologia , Spliceossomos/genética , Regulação da Expressão Gênica de Plantas/genética , Plantas Geneticamente Modificadas/genética , Regiões Promotoras Genéticas/genética , Ubiquitina-Proteína Ligases/genética
18.
PLoS One ; 8(8): e72729, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23951330

RESUMO

RING finger E3 ligases are components of the ubiquitin proteasome system (UPS) that mediate the transfer of ubiquitin to substrates. Single-subunit RING finger E3s binds the E2 ubiquitin-conjugating enzyme and contains recognition sequences for the substrate within the same polypeptide. Here we describe the characterization of a class of RING finger E3 ligases that is conserved among eukaryotes. This class encodes a RING-H2 domain related in sequence to the ATL RING-H2 domain, another class of E3 ligases, and a C2/C2 zing finger at the amino-terminus, formerly described as BZF. In viridiplantae (green algae and land plants), we designed this family as BTL for BZF ATLs. BTLs are putative orthologs of the mammalian Rabring7/BCA2 RING-H2 E3s that have expanded in angiosperms. They are found in numbers ranging from three to thirty-one, which is in contrast to the one to three members normally found in animals, fungi, and protists. Furthermore, the number of sequence LOGOs generated in angiosperms is four times greater than that in other eukaryotes. In contrast to ATLs, which show expansion by tandem duplication, tandemly duplicated BTLs are scarce. The mode of action of Rabring7/BCA2 and BTLs may be similar since both the Rabring7/BCA2 BZF and the ath|BTL4 BZF are likely to mediate the binding of ubiquitin. This study introduces valuable information on the evolution and domain structure of the Rabring7/BCA2/BTL class of E3 ligases which may be important for core eukaryotic genes.


Assuntos
Magnoliopsida/enzimologia , Domínios RING Finger , Ubiquitina-Proteína Ligases/química , Sequência de Aminoácidos , Animais , Genes de Plantas , Magnoliopsida/química , Magnoliopsida/genética , Magnoliopsida/metabolismo , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
19.
Plant Signal Behav ; 7(8): 1014-21, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22827943

RESUMO

An abundant class of E3 ubiquitin ligases encodes the RING-finger domain. The RING finger binds to the E2 ubiquitin-conjugating enzyme and brings together both the E2 and substrate. It is predicted that 477 RING finger E3 ligases exist in Arabidopsis thaliana. A particular family among them, named Arabidopsis Tóxicos en Levadura (ATL), consists of 91 members that contain the RING-H2 variation and a hydrophobic domain located at the N-terminal end. Transmembrane E3 ligases are important in several biological processes. For instance, some transmembrane RING finger E3 ligases are main participants in the endoplasmic reticulum-associated degradation pathway that targets misfolded proteins. Functional analysis of a number of ATLs has shown that some of them regulate distinct pathways in plants. Several ATLs have been shown to participate in defense responses, while others play a role in the regulation of the carbon/nitrogen response during post-germinative seedling growth transition, in the regulation of cell death during root development, in endosperm development, or in the transition to flowering under short day conditions. The ATL family has also been instrumental in evolution studies for showing how gene families are expanded in plant genomes.


Assuntos
Família Multigênica , Domínios RING Finger , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Sequência de Aminoácidos , Dados de Sequência Molecular , Fotoperíodo , Receptores de Reconhecimento de Padrão/genética , Receptores de Reconhecimento de Padrão/metabolismo , Ubiquitinação
20.
PLoS One ; 6(8): e23934, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21887349

RESUMO

Ubiquitin-ligases or E3s are components of the ubiquitin proteasome system (UPS) that coordinate the transfer of ubiquitin to the target protein. A major class of ubiquitin-ligases consists of RING-finger domain proteins that include the substrate recognition sequences in the same polypeptide; these are known as single-subunit RING finger E3s. We are studying a particular family of RING finger E3s, named ATL, that contain a transmembrane domain and the RING-H2 finger domain; none of the member of the family contains any other previously described domain. Although the study of a few members in A. thaliana and O. sativa has been reported, the role of this family in the life cycle of a plant is still vague. To provide tools to advance on the functional analysis of this family we have undertaken a phylogenetic analysis of ATLs in twenty-four plant genomes. ATLs were found in all the 24 plant species analyzed, in numbers ranging from 20-28 in two basal species to 162 in soybean. Analysis of ATLs arrayed in tandem indicates that sets of genes are expanding in a species-specific manner. To get insights into the domain architecture of ATLs we generated 75 pHMM LOGOs from 1815 ATLs, and unraveled potential protein-protein interaction regions by means of yeast two-hybrid assays. Several ATLs were found to interact with DSK2a/ubiquilin through a region at the amino-terminal end, suggesting that this is a widespread interaction that may assist in the mode of action of ATLs; the region was traced to a distinct sequence LOGO. Our analysis provides significant observations on the evolution and expansion of the ATL family in addition to information on the domain structure of this class of ubiquitin-ligases that may be involved in plant adaptation to environmental stress.


Assuntos
Genoma de Planta , Filogenia , Proteínas de Plantas/química , Domínios e Motivos de Interação entre Proteínas , Ubiquitina-Proteína Ligases/química , Adaptação Fisiológica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Mapeamento de Interação de Proteínas , Domínios RING Finger , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...