Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phycol ; 60(2): 483-502, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38264946

RESUMO

Kelp communities are experiencing exacerbated heat-related impacts from more intense, frequent, and deeper marine heatwaves (MHWs), imperiling the long-term survival of kelp forests in the climate change scenario. The occurrence of deep thermal anomalies is of critical importance, as elevated temperatures can impact kelp populations across their entire bathymetric range. This study evaluates the impact of MHWs on mature sporophytes of Pterygophora californica (walking kelp) from the bathymetric extremes (8-10 vs. 25-27 m) of a population situated in Baja California (Mexico). The location is near the southernmost point of the species's broad distribution (from Alaska to Mexico). The study investigated the ecophysiological responses (e.g., photobiology, nitrate uptake, oxidative stress) and growth of adult sporophytes through a two-phase experiment: warming simulating a MHW and a post-MHW phase without warming. Generally, the effects of warming differed depending on the bathymetric origin of the sporophytes. The MHW facilitated essential metabolic functions of deep-water sporophytes, including photosynthesis, and promoted their growth. In contrast, shallow-water sporophytes displayed metabolic stress, reduced growth, and oxidative damage. Upon the cessation of warming, certain responses, such as a decline in nitrate uptake and net productivity, became evident in shallow-water sporophytes, implying a delay in heat-stress response. This indicates that variation in temperatures can result in more prominent effects than warming alone. The greater heat tolerance of sporophytes in deeper waters shows convincing evidence that deep portions of P. californica populations have the potential to serve as refuges from the harmful impacts of MHWs on shallow reefs.


Assuntos
Kelp , Nitratos , México , Temperatura Alta , Água , Ecossistema
2.
Mar Environ Res ; 172: 105501, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34656017

RESUMO

Intertidal seagrasses are subjected to desiccation and direct solar radiation during low tides. It is assumed that the canopy structure can self-protect the underlying shoots during these events, although there is no evidence on a physiological basis. The physiological responses of the surfgrass Phyllospadix torreyi were examined when emerged during low tide, on i) shoots overlaying the canopy, and ii) shoots sheltered within the canopy. Leaf water potential and water content decreased in external leaves after emersion, and the higher concentration of organic osmolytes reflected osmoregulation. Additionally, these shoots also exhibited a drastic reduction in carbohydrates after re-immersion, likely from cellular damage. Lipid peroxidation and antioxidant activity increments were also detected, while photosynthetic efficiency strongly diminished from direct exposure to solar radiation. Conversely, the sheltered shoots did not dehydrate and solely accumulated some oxidative stress, likely resulting from the warming of the canopy. In conclusion, the leaf canopy structure buffers physiological stress in the sheltered shoots, thus acting as a self-protective mechanism to cope with emersion.


Assuntos
Zosteraceae , Fotossíntese , Folhas de Planta , Estresse Fisiológico , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...