Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 29(70): e202302847, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-37743257

RESUMO

The study of halogen bonds (XBs) has been a subject of great interest in recent years due to its clear application in catalysis, liquid crystals, and crystal engineering. In this study, we analyzed the intermolecular interactions, in particular halogen bonds in BODIPYs with an increasing number of bromine atoms. The computational study included analyses through three different methods: the first approach of close contacts provided by mercury, then the expanded approach of the electron density partition of the molecules in the crystals provided by the analysis of Hirshfeld surfaces, and finally, the approach of the Quantum Theory of Atoms in Molecules (QT-AIM) to characterize the non-covalent interactions through finding electron density critical points between atoms and between neighboring molecules. The use of different computational methods allowed to gain insight into the interactions directing the crystal packing as the number of bromine atoms increased in the BODIPY moiety. Monocoordinated and bifurcated halogen bonds involving halide/halide were found. The penta-brominated BODIPY showed four-center cyclic nodes where each node is linked via XBs. This kind of motif can be useful in supramolecular chemistry and self-assembly.

2.
Chemistry ; 26(69): 16530-16540, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-32608048

RESUMO

A set of BODIPY-carboranyl dyads synthesized by a Sonogashira cross-coupling reaction, where different C-substituted ortho- and meta-carboranyl fragments have been linked to a BODIPY fluorophore is described. Chemical, photophysical and physicochemical analyses are presented, including NMR and single XRD experiments, optical absorption/emission studies and partition coefficient (log P) measurements. These studies, supported by DFT computations (M06-2X/6-31G**), provide an explanation to the largely divergent cell income that these fluorescent carboranyl-based fluorophores display, for which a structural or physicochemical explanation remains elusive. By studying the cell uptake efficiency and subcellular localization for our set of dyads on living HeLa cells, we tracked the origins of these differences to significant variations in their static dipole moments and partition coefficients, which tune their ability to interact with lipophilic microenvironments in cells. Remarkably, m-carboranyl-BODIPY derivatives with a higher lipophilicity are much better internalised by cells than their homologous with o-carborane, suggesting that m-isomers are potentially better theranostic agents for in vitro bioimaging and boron carriers for boron neutron capture therapy.


Assuntos
Compostos de Boro/química , Terapia por Captura de Nêutron de Boro , Células HeLa , Humanos , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...