Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Br J Pharmacol ; 181(2): 273-282, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37309573

RESUMO

Although chemotherapeutic regimens can eliminate blasts in leukaemia patients, such therapies are associated with toxicity and often fail to eliminate all malignant cells resulting in disease relapse. Disease relapse has been attributed to the persistence of leukaemia cells in the bone marrow (BM) with the capacity to recapitulate disease; these cells are often referred to as leukaemia stem cells (LSCs). Although LSCs have distinct characteristics in terms of pathobiology and immunophenotype, they are still regulated by their interactions with the surrounding microenvironment. Thus, understanding the interaction between LSCs and their microenvironment is critical to identify effective therapies. To this end, there are numerous efforts to develop models to study such interactions. In this review, we will focus on the reciprocal interactions between LSCs and their milieu in the BM. Furthermore, we will highlight relevant therapies targeting these interactions and discuss some of the promising in vitro models designed to mimic such relationship. LINKED ARTICLES: This article is part of a themed issue on Cancer Microenvironment and Pharmacological Interventions. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.2/issuetoc.


Assuntos
Leucemia , Recidiva Local de Neoplasia , Humanos , Células-Tronco , Recidiva , Microambiente Tumoral
3.
Oncoimmunology ; 12(1): 2222560, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37363104

RESUMO

Focal radiation therapy (RT) has attracted considerable attention as a combinatorial partner for immunotherapy (IT), largely reflecting a well-defined, predictable safety profile and at least some potential for immunostimulation. However, only a few RT-IT combinations have been tested successfully in patients with cancer, highlighting the urgent need for an improved understanding of the interaction between RT and IT in both preclinical and clinical scenarios. Every year since 2016, ImmunoRad gathers experts working at the interface between RT and IT to provide a forum for education and discussion, with the ultimate goal of fostering progress in the field at both preclinical and clinical levels. Here, we summarize the key concepts and findings presented at the Sixth Annual ImmunoRad conference.


Assuntos
Neoplasias , Humanos , Terapia Combinada , Neoplasias/radioterapia , Neoplasias/tratamento farmacológico , Imunoterapia
4.
Nat Commun ; 14(1): 3742, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37353488

RESUMO

Systems-level assessments of protein-protein interaction (PPI) network dysfunctions are currently out-of-reach because approaches enabling proteome-wide identification, analysis, and modulation of context-specific PPI changes in native (unengineered) cells and tissues are lacking. Herein, we take advantage of chemical binders of maladaptive scaffolding structures termed epichaperomes and develop an epichaperome-based 'omics platform, epichaperomics, to identify PPI alterations in disease. We provide multiple lines of evidence, at both biochemical and functional levels, demonstrating the importance of these probes to identify and study PPI network dysfunctions and provide mechanistically and therapeutically relevant proteome-wide insights. As proof-of-principle, we derive systems-level insight into PPI dysfunctions of cancer cells which enabled the discovery of a context-dependent mechanism by which cancer cells enhance the fitness of mitotic protein networks. Importantly, our systems levels analyses support the use of epichaperome chemical binders as therapeutic strategies aimed at normalizing PPI networks.


Assuntos
Neoplasias , Mapas de Interação de Proteínas , Humanos , Proteoma/metabolismo , Mapeamento de Interação de Proteínas , Neoplasias/genética , Aclimatação
5.
Cell Death Dis ; 14(5): 305, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37142568

RESUMO

Autologous T cells engineered to express a chimeric antigen receptor (CAR) specific for CD19 are approved for the treatment of various CD19+ hematological malignancies. While CAR T cells induce objective responses in a majority of patients, relapse frequently occurs upon loss of CD19 expression by neoplastic cells. Radiation therapy (RT) has been successfully employed to circumvent the loss of CAR targets in preclinical models of pancreatic cancer. At least in part, this reflects the ability of RT to elicit death receptor (DR) expression by malignant cells, enabling at least some degree of CAR-independent tumor killing. In a human model of CD19+ acute lymphoblastic leukemia (ALL), we also observed DR upregulation by RT, both in vitro and in vivo. Moreover, low-dose total body irradiation (LD-TBI) delivered to ALL-bearing mice prior to CAR T cell infusion considerably extended the overall survival benefit afforded by CAR T cells alone. Such an improved therapeutic activity was accompanied by a superior expansion of CAR T cells in vivo. These data encourage the initiation of clinical trials combining LD-TBI with CAR T cells in patients with hematological malignancies.


Assuntos
Neoplasias Hematológicas , Leucemia-Linfoma Linfoblástico de Células Precursoras , Receptores de Antígenos Quiméricos , Humanos , Camundongos , Animais , Linfócitos T , Receptores de Antígenos de Linfócitos T , Leucemia-Linfoma Linfoblástico de Células Precursoras/radioterapia , Imunoterapia Adotiva
8.
EMBO J ; 42(7): e110496, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36843541

RESUMO

Aberrant splicing is typically attributed to splice-factor (SF) mutation and contributes to malignancies including acute myeloid leukemia (AML). Here, we discovered a mutation-independent means to extensively reprogram alternative splicing (AS). We showed that the dysregulated expression of eukaryotic translation initiation factor eIF4E elevated selective splice-factor production, thereby impacting multiple spliceosome complexes, including factors mutated in AML such as SF3B1 and U2AF1. These changes generated a splicing landscape that predominantly supported altered splice-site selection for ~800 transcripts in cell lines and ~4,600 transcripts in specimens from high-eIF4E AML patients otherwise harboring no known SF mutations. Nuclear RNA immunoprecipitations, export assays, polysome analyses, and mutational studies together revealed that eIF4E primarily increased SF production via its nuclear RNA export activity. By contrast, eIF4E dysregulation did not induce known SF mutations or alter spliceosome number. eIF4E interacted with the spliceosome and some pre-mRNAs, suggesting its direct involvement in specific splicing events. eIF4E induced simultaneous effects on numerous SF proteins, resulting in a much larger range of splicing alterations than in the case of mutation or dysregulation of individual SFs and providing a novel paradigm for splicing control and dysregulation.


Assuntos
Processamento Alternativo , Leucemia Mieloide Aguda , Humanos , Fatores de Processamento de RNA/metabolismo , Fator de Iniciação 4E em Eucariotos/metabolismo , Splicing de RNA , Fatores de Iniciação em Eucariotos/genética , Leucemia Mieloide Aguda/genética , Mutação
9.
Blood Adv ; 7(9): 1910-1914, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-36453641

RESUMO

Clonal hematopoiesis (CH) represents clonal expansion of mutated hematopoietic stem cells detectable in the peripheral blood or bone marrow through next generation sequencing. The current prevailing model posits that CH mutations detected in the peripheral blood mirror bone marrow mutations with clones widely disseminated across hematopoietic compartments. We sought to test the hypothesis that all clones are disseminated throughout hematopoietic tissues by comparing CH in hip vs peripheral blood specimens collected at the time of hip replacement surgery. Here, we show that patients with osteoarthritis have a high prevalence of CH, which involve genes encoding epigenetic modifiers and DNA damage repair pathway proteins. Importantly, we illustrate that CH, including clones with variant allele frequencies >10%, can be confined to specific bone marrow spaces and may be eliminated through surgical excision. Future work will define whether clones with somatic mutations in particular genes or clonal fractions of certain sizes are either more likely to be localized or are slower to disseminate into the peripheral blood and other bony sites.


Assuntos
Medula Óssea , Hematopoiese Clonal , Humanos , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Células Clonais
10.
Arch Med Res ; 53(8): 770-784, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36462951

RESUMO

It is well recognized that most cancers derive and progress from transformation and clonal expansion of a single cell that possesses stem cell properties, i.e., self-renewal and multilineage differentiation capacities. Such cancer stem cells (CSCs) are usually present at very low frequencies and possess properties that make them key players in tumor development. Indeed, besides having the ability to initiate tumor growth, CSCs drive tumor progression and metastatic dissemination, are resistant to most cancer drugs, and are responsible for cancer relapse. All of these features make CSCs attractive targets for the development of more effective oncologic treatments. In the present review article, we have summarized recent advances in the biology of CSCs, including their identification through their immunophenotype, and their physiology, both in vivo and in vitro. We have also analyzed some molecular markers that might become targets for developing new therapies aiming at hampering CSCs regeneration and cancer relapse.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Células-Tronco Neoplásicas , Neoplasias/tratamento farmacológico , Antineoplásicos/farmacologia , Diferenciação Celular
11.
Leuk Res ; 121: 106928, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35963025

RESUMO

PURPOSE: Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a hematologic malignancy associated with overexpression of CD123. Allogeneic chimeric antigen receptor T cells (CAR-T) directed against CD123 in BPDCN have been studied in clinical trials. We performed post-mortem analysis of a patient treated with anti-CD123 CAR-T to elucidate cause of death, development of cytokine release syndrome (CRS), and tissue distribution of UCART123 cells. METHODS: A post-mortem multidisciplinary clinicopathologic analysis was performed with digital droplet polymerase chain reaction of isolated blood and tissue ribonucleic acid (RNA) to evaluate tissue distribution of infused CAR-T. Multiparameter flow cytometry for detection of CAR-T was used for whole blood samples. Cytokine levels in plasma were measured using multiplex bead assay. Gene expression profiling on isolated RNA was performed using semi-custom Nanostring immune gene panel and RNA-sequence method. RNA in situ hybridization was performed using CAR-specific probe. RESULTS: The patient developed severe clinical CRS refractory to corticosteroids, tocilizumab, and lymphodepletion. Despite significant reduction in BPDCN lesions, the patient passed away on day 9 of CAR-T. Autopsy results show that following lymphodepletion and UCART123 administration, the patient remained severely lymphopenic with few UCART123 cells detected, predominantly localized to spleen. CONCLUSIONS: No definitive cause of death was determined, but we hypothesized that the patient may have succumbed to CAR-T-mediated cardiopulmonary toxicity. UCART123 cells displayed low overall distribution, with predominance in immune organs and tissues. Mechanism of CRS development is still poorly understood in patients receiving CAR-T therapy. Future directions in the field developing CD123-targeted agents in BPDCN are discussed.


Assuntos
Neoplasias Hematológicas , Transplante de Células-Tronco Hematopoéticas , Transtornos Mieloproliferativos , Receptores de Antígenos Quiméricos , Neoplasias Cutâneas , Doença Aguda , Citocinas/metabolismo , Células Dendríticas/patologia , Neoplasias Hematológicas/patologia , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Subunidade alfa de Receptor de Interleucina-3 , Transtornos Mieloproliferativos/patologia , RNA/metabolismo , RNA/uso terapêutico , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Antígenos Quiméricos/uso terapêutico , Neoplasias Cutâneas/metabolismo
12.
Molecules ; 27(9)2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35566279

RESUMO

A method to identify anticancer compounds in plants was proposed based on the hypothesis that these compounds are primarily present in plants to provide them with an ecological advantage over neighboring plants and other competitors. According to this view, identifying plants that contain compounds that inhibit or interfere with the development of other plant species may facilitate the discovery of novel anticancer agents. The method was developed and tested using Magnolia grandiflora, Gynoxys verrucosa, Picradeniopsis oppositifolia, and Hedyosmum racemosum, which are plant species known to possess compounds with cytotoxic activities. Plant extracts were screened for growth inhibitory activity, and then a thin-layer chromatography bioautography assay was conducted. This located the major antileukemic compounds 1, 2, 4, and 5 in the extracts. Once the active compounds were located, they were extracted and purified, and their structures were determined. The growth inhibitory activity of the purified compounds showed a significant correlation with their antileukemic activity. The proposed approach is rapid, inexpensive, and can easily be implemented in areas of the world with high biodiversity but with less access to advanced facilities and biological assays.


Assuntos
Asteraceae , Asteraceae/química , Cromatografia em Camada Fina , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Plantas
13.
Nat Commun ; 13(1): 2228, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35484100

RESUMO

Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare hematologic malignancy with poor outcomes with conventional therapy. Nearly 100% of BPDCNs overexpress interleukin 3 receptor subunit alpha (CD123). Given that CD123 is differentially expressed on the surface of BPDCN cells, it has emerged as an attractive therapeutic target. UCART123 is an investigational product consisting of allogeneic T cells expressing an anti-CD123 chimeric antigen receptor (CAR), edited with TALEN® nucleases. In this study, we examine the antitumor activity of UCART123 in preclinical models of BPDCN. We report that UCART123 have selective antitumor activity against CD123-positive primary BPDCN samples (while sparing normal hematopoietic progenitor cells) in the in vitro cytotoxicity and T cell degranulation assays; supported by the increased secretion of IFNγ by UCART123 cells when cultured in the presence of BPDCN cells. UCART123 eradicate BPDCN and result in long-term disease-free survival in a subset of primary patient-derived BPDCN xenograft mouse models. One potential challenge of CD123 targeting therapies is the loss of CD123 antigen through diverse genetic mechanisms, an event observed in one of three BPDCN PDX studied. In summary, these results provide a preclinical proof-of-principle that allogeneic UCART123 cells have potent anti-BPDCN activity.


Assuntos
Neoplasias Hematológicas , Transplante de Células-Tronco Hematopoéticas , Transtornos Mieloproliferativos , Neoplasias Cutâneas , Doença Aguda , Animais , Células Dendríticas/metabolismo , Neoplasias Hematológicas/tratamento farmacológico , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Subunidade alfa de Receptor de Interleucina-3/metabolismo , Camundongos , Transtornos Mieloproliferativos/metabolismo , Neoplasias Cutâneas/patologia
14.
Nat Commun ; 13(1): 2227, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35484102

RESUMO

Acute myeloid leukemia (AML) is a disease with high incidence of relapse that is originated and maintained from leukemia stem cells (LSCs). Hematopoietic stem cells can be distinguished from LSCs by an array of cell surface antigens such as CD123, thus a candidate to eliminate LSCs using a variety of approaches, including CAR T cells. Here, we evaluate the potential of allogeneic gene-edited CAR T cells targeting CD123 to eliminate LSCs (UCART123). UCART123 cells are TCRαßneg T cells generated from healthy donors using TALEN® gene-editing technology, decreasing the likelihood of graft vs host disease. As safety feature, cells express RQR8 to allow elimination with Rituximab. UCART123 effectively eliminates AML cells in vitro and in vivo with significant benefits in overall survival of AML-patient derived xenograft mice. Furthermore, UCART123 preferentially target AML over normal cells with modest toxicity to normal hematopoietic stem/progenitor cells. Together these results suggest that UCART123 represents an off-the shelf therapeutic approach for AML.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Animais , Humanos , Subunidade alfa de Receptor de Interleucina-3/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/terapia , Camundongos , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Linfócitos T
15.
Methods Cell Biol ; 167: 185-201, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35152996

RESUMO

The landscape of CAR-T detection and monitoring techniques in preclinical models is rapidly evolving. In this chapter, we will discuss the most widely used methods. The chapter begins with elaborating on the rational of establishing and optimizing protocols for CAR-T monitoring and explaining why this is a crucial step in CAR-T early development. This conceptual basis will be followed by detailed protocols: polymerase chain reaction (PCR), flow cytometry and bioluminescence imaging (BLI). These in vivo methods can be implemented in labs with interest in CAR-T pre-clinical research. It will provide important tools in the process of CAR-T development and offer better understanding of their efficacy, cytotoxicity and survival.


Assuntos
Imunoterapia Adotiva , Linfócitos T , Citometria de Fluxo/métodos , Imunoterapia Adotiva/métodos , Reação em Cadeia da Polimerase/métodos
16.
JCO Precis Oncol ; 6: e2100309, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35025619

RESUMO

PURPOSE: Hematologic toxic effects of peptide receptor radionuclide therapy (PRRT) can be permanent. Patients with underlying clonal hematopoiesis (CH) may be more inclined to develop hematologic toxicity after PRRT. However, this association remains understudied. MATERIALS AND METHODS: We evaluated pre- and post-PRRT blood samples of patients with neuroendocrine tumors. After initial screening, 13 cases of interest were selected. Serial blood samples were obtained on 4 of 13 patients. Genomic DNA was analyzed using a 100-gene panel. A variant allele frequency cutoff of 1% was used to call CH. RESULT: Sixty-two percent of patients had CH at baseline. Persistent cytopenias were noted in 64% (7 of 11) of the patients. Serial sample analysis demonstrated that PRRT exposure resulted in clonal expansion of mutant DNA damage response genes (TP53, CHEK2, and PPM1D) and accompanying cytopenias in 75% (3 of 4) of the patients. One patient who had a normal baseline hemogram and developed persistent cytopenias after PRRT exposure showed expansion of mutant PPM1D (variant allele frequency increased to 20% after exposure from < 1% at baseline). In the other two patients, expansion of mutant TP53, CHEK2, and PPM1D clones was also noted along with cytopenia development. CONCLUSION: The shifts in hematopoietic clonal dynamics in our study were accompanied by emergence and persistence of cytopenias. These cytopenias likely represent premalignant state, as PPM1D-, CHEK2-, and TP53-mutant clones by themselves carry a high risk for transformation to therapy-related myeloid neoplasms. Future studies should consider CH screening and longitudinal monitoring as a key risk mitigation strategy for patients with neuroendocrine tumors receiving PRRT.


Assuntos
Hematopoiese Clonal/genética , Hematopoese , Sistema Hematopoético , Tumores Neuroendócrinos/sangue , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/radioterapia , Proteína Fosfatase 2C/genética , Radioisótopos/efeitos adversos , Receptores de Peptídeos , Proteína Supressora de Tumor p53/fisiologia , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Radioisótopos/uso terapêutico , Radioterapia/efeitos adversos
17.
Hemasphere ; 6(1): e676, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34964040

RESUMO

Measurable residual disease (MRD) quantified by multiparameter flow cytometry (MFC) is a strong and independent prognostic factor in acute myeloid leukemia (AML). However, several technical factors may affect the final read-out of the assay. Experts from the MRD Working Party of the European LeukemiaNet evaluated which aspects are crucial for accurate MFC-MRD measurement. Here, we report on the agreement, obtained via a combination of a cross-sectional questionnaire, live discussions, and a Delphi poll. The recommendations consist of several key issues from bone marrow sampling to final laboratory reporting to ensure quality and reproducibility of results. Furthermore, the experiences were tested by comparing two 8-color MRD panels in multiple laboratories. The results presented here underscore the feasibility and the utility of a harmonized theoretical and practical MFC-MRD assessment and are a next step toward further harmonization.

18.
Front Immunol ; 12: 746492, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34737747

RESUMO

B-cell acute lymphoblastic leukemia (B-ALL) results from the expansion of malignant lymphoid precursors within the bone marrow (BM), where hematopoietic niches and microenvironmental signals provide leukemia-initiating cells (LICs) the conditions to survive, proliferate, initiate disease, and relapse. Normal and malignant lymphopoiesis are highly dependent on the BM microenvironment, particularly on CXCL12-abundant Reticular (CAR) cells, which provide a niche for maintenance of primitive cells. During B-ALL, leukemic cells hijack BM niches, creating a proinflammatory milieu incompetent to support normal hematopoiesis but favoring leukemic proliferation. Although the lack of a phenotypic stem cell hierarchy is apparent in B-ALL, LICs are a rare and quiescent population potentially responsible for chemoresistance and relapse. Here, we developed novel patient-derived leukemia spheroids (PDLS), an ex vivo avatar model, from mesenchymal stromal cells (MSCs) and primary B-ALL cells, to mimic specialized niche structures and cell-to-cell intercommunication promoting normal and malignant hematopoiesis in pediatric B-ALL. 3D MSC spheroids can recapitulate CAR niche-like hypoxic structures that produce high levels of CXCL10 and CXCL11. We found that PDLS were preferentially enriched with leukemia cells displaying functional properties of LICs, such as quiescence, low reactive oxygen species, drug resistance, high engraftment in immunodeficient mice, and long-term leukemogenesis. Moreover, the combination of PDLS and patient-derived xenografts confirmed a microenvironment-driven hierarchy in their leukemic potential. Importantly, transcriptional profiles of MSC derived from primary patient samples revealed two unique signatures (1), a CXCL12low inflammatory and leukemia expansion (ILE)-like niche, that likely supports leukemic burden, and (2) a CXCL11hi immune-suppressive and leukemia-initiating cell (SLIC)-like niche, where LICs are likely sustained. Interestingly, the CXCL11+ hypoxic zones were recapitulated within the PDLS that are capable of supporting LIC functions. Taken together, we have implemented a novel PDLS system that enriches and supports leukemia cells with stem cell features driven by CXCL11+ MSCs within hypoxic microenvironments capable of recapitulating key features, such as tumor reemergence after exposure to chemotherapy and tumor initiation. This system represents a unique opportunity for designing ex vivo personalized avatars for B-ALL patients to evaluate their own LIC pathobiology and drug sensitivity in the context of the tumor microenvironment.


Assuntos
Células-Tronco Neoplásicas/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Esferoides Celulares , Nicho de Células-Tronco , Células Tumorais Cultivadas , Animais , Medula Óssea/patologia , Feminino , Xenoenxertos , Humanos , Células-Tronco Mesenquimais/patologia , Camundongos , Microambiente Tumoral
19.
Blood ; 138(26): 2753-2767, 2021 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-34724563

RESUMO

Measurable residual disease (MRD) is an important biomarker in acute myeloid leukemia (AML) that is used for prognostic, predictive, monitoring, and efficacy-response assessments. The European LeukemiaNet (ELN) MRD Working Party evaluated standardization and harmonization of MRD in an ongoing manner and has updated the 2018 ELN MRD recommendations based on significant developments in the field. New and revised recommendations were established during in-person and online meetings, and a 2-stage Delphi poll was conducted to optimize consensus. All recommendations are graded by levels of evidence and agreement. Major changes include technical specifications for next-generation sequencing-based MRD testing and integrative assessments of MRD irrespective of technology. Other topics include use of MRD as a prognostic and surrogate end point for drug testing; selection of the technique, material, and appropriate time points for MRD assessment; and clinical implications of MRD assessment. In addition to technical recommendations for flow- and molecular-MRD analysis, we provide MRD thresholds and define MRD response, and detail how MRD results should be reported and combined if several techniques are used. MRD assessment in AML is complex and clinically relevant, and standardized approaches to application, interpretation, technical conduct, and reporting are of critical importance.


Assuntos
Leucemia Mieloide Aguda/diagnóstico , Neoplasia Residual/diagnóstico , Europa (Continente) , Citometria de Fluxo/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Leucemia Mieloide Aguda/genética , Neoplasia Residual/genética , Prognóstico
20.
Front Oncol ; 11: 701318, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34527579

RESUMO

BACKGROUND: NPM1 mutation status can influence prognosis and management in AML. Accordingly, clinical testing (i.e., RT-PCR, NGS and IHC) for mutant NPM1 is increasing in order to detect residual disease in AML, alongside flow cytometry (FC). However, the relationship of the results from RT-PCR to traditional NGS, IHC and FC is not widely known among many practitioners. Herein, we aim to: i) describe the performance of RT-PCR compared to traditional NGS and IHC for the detection of mutant NPM1 in clinical practice, and also compare it to FC, and ii) provide our observations regarding the advantages and disadvantages of each approach in order to inform future clinical testing algorithms. METHODS: Peripheral blood and bone marrow samples collected for clinical testing at variable time points during patient management were tested by quantitative, real-time, RT-PCR and results were compared to findings from a Myeloid NGS panel, mutant NPM1 IHC and FC. RESULTS: RT-PCR showed superior sensitivity compared to NGS, IHC and FC with the main challenge of NGS, IHC and FC being the ability to identify a low disease burden (<0.5% NCN by RT-PCR). Nevertheless, the positive predictive value of NGS, IHC and FC were each ≥ 80% indicating that positive results by those assays are typically associated with RT-PCR positivity. IHC, unlike bulk methods (RT-PCR, NGS and FC), is able provide information regarding cellular/architectural context of disease in biopsies. FC did not identify any NPM1-mutated residual disease not already detected by RT-PCR, NGS or IHC. CONCLUSION: Overall, our findings demonstrate that RT-PCR shows superior sensitivity compared to a traditional Myeloid NGS, suggesting the need for "deep-sequencing" NGS panels for NGS-based monitoring of residual disease in NPM1-mutant AML. IHC provides complementary cytomorphologic information to RT-PCR. Lastly, FC may not be necessary in the setting of post-therapy follow up for NPM1-mutated AML. Together, these findings can help inform future clinical testing algorithms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...