Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Yeast ; 27(1): 41-52, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19894211

RESUMO

Recent evidence indicates considerable cross-talk between genome maintenance and cell integrity control pathways. The RNA recognition motif (RRM)- and SQ/TQ cluster domain (SCD)-containing protein Mdt1 is required for repair of 3'-blocked DNA double-strand breaks (DSBs) and efficient recombinational maintenance of telomeres in budding yeast. Here we show that deletion of MDT1 (PIN4/YBL051C) leads to severe synthetic sickness in the absence of the genes for the central cell integrity MAP kinases Bck1 and Slt2/Mpk1. Consistent with a cell integrity function, mdt1Delta cells are hypersensitive to the cell wall toxin calcofluor white and the Bck1-Slt2 pathway activator caffeine. An RRM-deficient mdt1-RRM0 allele shares the severe bleomycin hypersensitivity, inefficient recombinational telomere maintenance and slt2 synthetic sickness phenotypes, but not the cell wall toxin hypersensitivity with mdt1Delta. However, the mdt1-RRM(3A) allele, where only the RNA-binding site is mutated, behaves similarly to the wild-type, suggesting that the Mdt1 RRM functions as a protein-protein interaction rather than a nucleic acid-binding module. Surprisingly, in a strain background where double mutants are sick but still viable, bck1Deltamdt1Delta and slt2Deltamdt1Delta mutants differ in some of their phenotypes, consistent with the emerging concept of flexible signal entry and exit points in the Bck1-Mkk1/2-Slt2 pathway. Overall, the results indicate that Mdt1 has partially separable functions in both cell wall and genome integrity pathways.


Assuntos
Regulação Fúngica da Expressão Gênica/fisiologia , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Benzenossulfonatos , Sítios de Ligação , Bleomicina , Cafeína , Deleção de Genes , Genoma Fúngico , Sistema de Sinalização das MAP Quinases/genética , Sistema de Sinalização das MAP Quinases/fisiologia , Ligação Proteica , RNA Fúngico/metabolismo , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Sorbitol
2.
EMBO J ; 28(17): 2583-600, 2009 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-19629037

RESUMO

Insulators bind transcription factors and use chromatin remodellers and modifiers to mediate insulation. In this report, we identified proteins required for the efficient formation and maintenance of a specialized chromatin structure at the yeast tRNA insulator. The histone acetylases, SAS-I and NuA4, functioned in insulation, independently of tRNA and did not participate in the formation of the hypersensitive site at the tRNA. In contrast, DNA polymerase epsilon, functioned with the chromatin remodeller, Rsc, and the histone acetylase, Rtt109, to generate a histone-depleted region at the tRNA insulator. Rsc and Rtt109 were required for efficient binding of TFIIIB to the tRNA insulator, and the bound transcription factor and Rtt109 in turn were required for the binding of Rsc to tRNA. Robust insulation during growth and cell division involves the formation of a hypersensitive site at the insulator during chromatin maturation together with competition between acetylases and deacetylases.


Assuntos
Cromatina/química , DNA Polimerase II/metabolismo , Proteínas de Ligação a DNA/metabolismo , Histona Acetiltransferases/metabolismo , Elementos Isolantes , RNA de Transferência/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Proteínas de Ligação a DNA/genética , Histona Acetiltransferases/genética , Histonas/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética
3.
BMC Genet ; 9: 46, 2008 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-18616809

RESUMO

BACKGROUND: Tra1 is an essential 437-kDa component of the Saccharomyces cerevisiae SAGA/SLIK and NuA4 histone acetyltransferase complexes. It is a member of a group of key signaling molecules that share a carboxyl-terminal domain related to phosphatidylinositol-3-kinase but unlike many family members, it lacks kinase activity. To identify genetic interactions for TRA1 and provide insight into its function we have performed a systematic genetic array analysis (SGA) on tra1SRR3413, an allele that is defective in transcriptional regulation. RESULTS: The SGA analysis revealed 114 synthetic slow growth/lethal (SSL) interactions for tra1SRR3413. The interacting genes are involved in a range of cellular processes including gene expression, mitochondrial function, and membrane sorting/protein trafficking. In addition many of the genes have roles in the cellular response to stress. A hierarchal cluster analysis revealed that the pattern of SSL interactions for tra1SRR3413 most closely resembles deletions of a group of regulatory GTPases required for membrane sorting/protein trafficking. Consistent with a role for Tra1 in cellular stress, the tra1SRR3413 strain was sensitive to rapamycin. In addition, calcofluor white sensitivity of the strain was enhanced by the protein kinase inhibitor staurosporine, a phenotype shared with the Ada components of the SAGA/SLIK complex. Through analysis of a GFP-Tra1 fusion we show that Tra1 is principally localized to the nucleus. CONCLUSION: We have demonstrated a genetic association of Tra1 with nuclear, mitochondrial and membrane processes. The identity of the SSL genes also connects Tra1 with cellular stress, a result confirmed by the sensitivity of the tra1SRR3413 strain to a variety of stress conditions. Based upon the nuclear localization of GFP-Tra1 and the finding that deletion of the Ada components of the SAGA complex result in similar phenotypes as tra1SRR3413, we suggest that the effects of tra1SRR3413 are mediated, at least in part, through its role in the SAGA complex.


Assuntos
Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Alelos , Benzenossulfonatos/farmacologia , Núcleo Celular/genética , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Ligação Genética , Proteínas de Fluorescência Verde , Histona Acetiltransferases/genética , Membranas Intracelulares/metabolismo , Mitocôndrias/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Plasmídeos , Transporte Proteico , Proteínas Recombinantes de Fusão/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Deleção de Sequência , Sorbitol/farmacologia , Estaurosporina/farmacologia , Transativadores/genética
4.
Genetics ; 177(1): 151-66, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17660562

RESUMO

Tra1 is an essential component of the Saccharomyces cerevisiae SAGA and NuA4 complexes. Using targeted mutagenesis, we identified residues within its C-terminal phosphatidylinositol-3-kinase (PI3K) domain that are required for function. The phenotypes of tra1-P3408A, S3463A, and SRR3413-3415AAA included temperature sensitivity and reduced growth in media containing 6% ethanol or calcofluor white or depleted of phosphate. These alleles resulted in a twofold or greater change in expression of approximately 7% of yeast genes in rich media and reduced activation of PHO5 and ADH2 promoters. Tra1-SRR3413 associated with components of both the NuA4 and SAGA complexes and with the Gal4 transcriptional activation domain similar to wild-type protein. Tra1-SRR3413 was recruited to the PHO5 promoter in vivo but gave rise to decreased relative amounts of acetylated histone H3 and histone H4 at SAGA and NuA4 regulated promoters. Distinct from other components of these complexes, tra1-SRR3413 resulted in generation-dependent telomere shortening and synthetic slow growth in combination with deletions of a number of genes with roles in membrane-related processes. While the tra1 alleles have some phenotypic similarities with deletions of SAGA and NuA4 components, their distinct nature may arise from the simultaneous alteration of SAGA and NuA4 functions.


Assuntos
Fosfatidilinositol 3-Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Alelos , Western Blotting , Imunoprecipitação da Cromatina , DNA Fúngico/genética , DNA Fúngico/metabolismo , Perfilação da Expressão Gênica , Histona Acetiltransferases , Mutação/genética , Fenótipo , Fosfatidilinositol 3-Quinases/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Telômero/fisiologia , beta-Galactosidase/metabolismo
5.
Proc Natl Acad Sci U S A ; 102(39): 13956-61, 2005 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-16172405

RESUMO

Accurate chromosome segregation requires the execution and coordination of many processes during mitosis, including DNA replication, sister chromatid cohesion, and attachment of chromosomes to spindle microtubules via the kinetochore complex. Additional pathways are likely involved because faithful chromosome segregation also requires proteins that are not physically associated with the chromosome. Using kinetochore mutants as a starting point, we have identified genes with roles in chromosome stability by performing genome-wide screens employing synthetic genetic array methodology. Two genetic approaches (a series of synthetic lethal and synthetic dosage lethal screens) isolated 211 nonessential deletion mutants that were unable to tolerate defects in kinetochore function. Although synthetic lethality and synthetic dosage lethality are thought to be based upon similar genetic principles, we found that the majority of interactions associated with these two screens were nonoverlapping. To functionally characterize genes isolated in our screens, a secondary screen was performed to assess defects in chromosome segregation. Genes identified in the secondary screen were enriched for genes with known roles in chromosome segregation. We also uncovered genes with diverse functions, such as RCS1, which encodes an iron transcription factor. RCS1 was one of a small group of genes identified in all three screens, and we used genetic and cell biological assays to confirm that it is required for chromosome stability. Our study shows that systematic genetic screens are a powerful means to discover roles for uncharacterized genes and genes with alternative functions in chromosome maintenance that may not be discovered by using proteomics approaches.


Assuntos
Segregação de Cromossomos/genética , Genes Fúngicos , Genes Letais , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Saccharomyces cerevisiae/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Instabilidade Cromossômica/genética , Cromossomos Fúngicos/metabolismo , Genômica/métodos , Cinetocoros/metabolismo , Mutação , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/análise , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/análise , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...