Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2313625, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38552258

RESUMO

Neural probe engineering is a dynamic field, driving innovation in neuroscience and addressing scientific and medical demands. Recent advancements involve integrating nanomaterials to improve performance, aiming for sustained in vivo functionality. However, challenges persist due to size, stiffness, complexity, and manufacturing intricacies. To address these issues, a neural interface utilizing freestanding CNT-sheets drawn from CNT-forests integrated onto thermally drawn functional polymer fibers is proposed. This approach yields a device with structural alignment, resulting in exceptional electrical, mechanical, and electrochemical properties while retaining biocompatibility for prolonged periods of implantation. This Structurally Aligned Multifunctional neural Probe (SAMP) employing forest-drawn CNT sheets demonstrates in vivo capabilities in neural recording, neurotransmitter detection, and brain/spinal cord circuit manipulation via optogenetics, maintaining functionality for over a year post-implantation. The straightforward fabrication method's versatility, coupled with the device's functional reliability, underscores the significance of this technique in the next-generation carbon-based implants. Moreover, the device's longevity and multifunctionality position it as a promising platform for long-term neuroscience research.

2.
Micromachines (Basel) ; 12(2)2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33669511

RESUMO

Underwater robots and vehicles have received great attention due to their potential applications in remote sensing and search and rescue. A challenge for micro aquatic robots is the lack of small motors needed for three-dimensional locomotion in water. Here, we show a simple diving and surfacing device fabricated from thermo-sensitive poly(N-isopropylacrylamide) or a poly(N-isopropylacrylamide)-containing hydrogel. The poly(N-isopropylacrylamide)-containing device exhibited fast and reversible diving/surfacing cycles in response to changing temperature. Modulation of the interaction between poly(N-isopropylacrylamide) chains and water molecules at temperatures above or below the lower critical solution temperature regulates the gel density through the swelling and de-swelling. The gel surfaced in water when heated and sank when cooled. We further showed reversible diving/surfacing cycles of the device when exposed to electrical and ultrasonic stimuli. Finally, a small electrically heated gel was incorporated into a miniature submarine and used to control the diving depth. These results suggest that the poly(N-isopropylacrylamide)-containing device has good potential for underwater remote-controlled micro aquatic robots.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...