Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 111(24): 246401, 2013 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-24483680

RESUMO

Providing a full theoretical description of the single-particle spectral function observed for high-temperature superconductors in the normal state is an important goal, yet unrealized. Here, we present a phenomenological model approaching towards this goal. The model results from implementing key phenomenological improvement in the so-called extremely correlated Fermi-liquid model. The model successfully describes the dichotomy of the spectral function as functions of momentum and energy and fits data for different materials (Bi2Sr2CaCu2O8+δ and La2-xSrxCuO4), with an identical set of intrinsic parameters. The current analysis goes well beyond the prevalent analysis of the spectral function as a function of momentum alone.

2.
Phys Rev Lett ; 107(5): 056404, 2011 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-21867084

RESUMO

The normal-state single particle spectral function of the high temperature superconducting cuprates, measured by the angle-resolved photoelectron spectroscopy (ARPES), has been considered both anomalous and crucial to understand. Here, we report an unprecedented success of the new extremely correlated Fermi liquid theory by one of us [B. S. Shastry, Phys. Rev. Lett. 107, 056403 (2011)] to describe both laser and conventional synchrotron ARPES data (nodal cut at optimal doping) on Bi(2)Sr(2)CaCu(2)O(8+δ) and synchrotron data on La(1.85)Sr(0.15)CuO(4). It fits all data sets with the same physical parameter values, satisfies the particle sum rule and successfully addresses two widely discussed kink anomalies in the dispersion.

3.
Nat Mater ; 6(10): 770-5, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17828279

RESUMO

Graphene has shown great application potential as the host material for next-generation electronic devices. However, despite its intriguing properties, one of the biggest hurdles for graphene to be useful as an electronic material is the lack of an energy gap in its electronic spectra. This, for example, prevents the use of graphene in making transistors. Although several proposals have been made to open a gap in graphene's electronic spectra, they all require complex engineering of the graphene layer. Here, we show that when graphene is epitaxially grown on SiC substrate, a gap of approximately 0.26 eV is produced. This gap decreases as the sample thickness increases and eventually approaches zero when the number of layers exceeds four. We propose that the origin of this gap is the breaking of sublattice symmetry owing to the graphene-substrate interaction. We believe that our results highlight a promising direction for bandgap engineering of graphene.

4.
Phys Rev Lett ; 98(16): 166403, 2007 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-17501439

RESUMO

We present the first direct study of charge density wave (CDW) formation in quasi-2D single layer LaTe2 using high-resolution angle resolved photoemission spectroscopy and low energy electron diffraction. CDW formation is driven by Fermi surface (FS) nesting, however, characterized by a surprisingly smaller gap ( approximately 50 meV) than seen in the double layer RTe2 compounds, extending over the entire FS. This establishes LaTe2 as the first reported semiconducting 2D CDW system where the CDW phase is FS nesting driven. In addition, the layer dependence of this phase in the tellurides and the possible transition from a stripe to a checkerboard phase is discussed.

5.
Phys Rev Lett ; 98(6): 067004, 2007 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-17358976

RESUMO

A universal high energy anomaly in the single particle spectral function is reported in three different families of high temperature superconductors by using angle-resolved photoemission spectroscopy. As we follow the dispersing peak of the spectral function from the Fermi energy to the valence band complex, we find dispersion anomalies marked by two distinctive high energy scales, E1 approximately 0.38 eV and E2 approximately 0.8 eV. E1 marks the energy above which the dispersion splits into two branches. One is a continuation of the near parabolic dispersion, albeit with reduced spectral weight, and reaches the bottom of the band at the Gamma point at approximately 0.5 eV. The other is given by a peak in the momentum space, nearly independent of energy between E1 and E2. Above E2, a bandlike dispersion reemerges. We conjecture that these two energies mark the disintegration of the low-energy quasiparticles into a spinon and holon branch in the high Tc cuprates.

6.
Phys Rev Lett ; 97(22): 227001, 2006 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-17155831

RESUMO

We discuss the nature of electron-lattice interaction in optimally doped Bi_{2}Sr_{2}CaCu_{2}O_{8+delta} samples, using the isotope effect (IE) in angle resolved photoemission spectroscopy (ARPES) data. The IE in the ARPES linewidth and the IE in the ARPES dispersion are both quite large, implying a strong electron-lattice correlation. The strength of the electron-lattice interaction is "intermediate," i.e., stronger than the Migdal-Eliashberg regime but weaker than the small polaron regime, requiring a more general picture of the ARPES kink than the commonly used Migdal-Eliashberg picture. The two IEs also imply a complex interaction, due to their strong momentum dependence and their differing sign behaviors. In sum, we propose an intermediate-strength coupling of electrons to localized lattice vibrations via charge density fluctuations.

7.
Phys Rev Lett ; 97(9): 097202, 2006 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-17026395

RESUMO

We report experimental evidence for a transition in the interface coupling between an antiferromagnetic film and a ferromagnetic substrate. The transition is observed in a thin epitaxial NiO film grown on top of Fe(001) as the film thickness is increased. Photoemission electron microscopy excited with linearly polarized x rays shows that the NiO film is antiferromagnetic at room temperature with in-plane uniaxial magnetic anisotropy. The anisotropy axis is perpendicular to the Fe substrate magnetization when the NiO thickness is less than about 15 A, but rapidly becomes parallel to the Fe magnetization for a NiO coverage higher than 25 A.

8.
Phys Rev Lett ; 96(19): 196403, 2006 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-16803117

RESUMO

Temperature dependent high resolution photoemission spectra of quasi-one-dimensional Li(0.9)Mo(6)O(17)evince a strong renormalization of its Luttinger-liquid density-of-states anomalous exponent. We trace this new effect to interacting charge neutral critical modes that emerge naturally from the two-band nature of the material. Li(0.9)Mo(6)O(17) is shown thereby to be a paradigm material that is capable of revealing new Luttinger physics.

9.
Phys Rev Lett ; 96(6): 067005, 2006 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-16606036

RESUMO

The joint density of states of Bi2Sr2CaCu2O(8+delta) is calculated by evaluating the autocorrelation of the single particle spectral function A(k, omega) measured from angle resolved photoemission spectroscopy (ARPES). These results are compared with Fourier transformed (FT) conductance modulations measured by scanning tunneling microscopy (STM). Good agreement between the two experimental probes is found for two different doping values examined. In addition, by comparing the FT-STM results to the autocorrelated ARPES spectra with different photon polarization, new insight on the form of the STM matrix elements is obtained. This shines new light on unsolved mysteries in the tunneling data.

10.
Phys Rev Lett ; 93(7): 076404, 2004 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-15324257

RESUMO

Photoemission spectra of the paramagnetic insulating phase of (V0.972Cr0.028)2O3, taken in ultrahigh vacuum up to the unusually high temperature (T) of 800 K, reveal a property unique to the Mott-Hubbard (MH) insulator that has not been observed previously. With increasing T the MH gap is filled by spectral weight transfer, in qualitative agreement with high-T theoretical calculations combining dynamical mean field theory and band theory in the local density approximation.

11.
Nature ; 430(6996): 187-90, 2004 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-15241409

RESUMO

In conventional superconductors, the electron pairing that allows superconductivity is caused by exchange of virtual phonons, which are quanta of lattice vibration. For high-transition-temperature (high-T(c)) superconductors, it is far from clear that phonons are involved in the pairing at all. For example, the negligible change in T(c) of optimally doped Bi2Sr2CaCu2O8+delta (Bi2212; ref. 1) upon oxygen isotope substitution (16O --> 18O leads to T(c) decreasing from 92 to 91 K) has often been taken to mean that phonons play an insignificant role in this material. Here we provide a detailed comparison of the electron dynamics of Bi2212 samples containing different oxygen isotopes, using angle-resolved photoemission spectroscopy. Our data show definite and strong isotope effects. Surprisingly, the effects mainly appear in broad high-energy humps, commonly referred to as 'incoherent peaks'. As a function of temperature and electron momentum, the magnitude of the isotope effect closely correlates with the superconducting gap--that is, the pair binding energy. We suggest that these results can be explained in a dynamic spin-Peierls picture, where the singlet pairing of electrons and the electron-lattice coupling mutually enhance each other.

12.
Phys Rev Lett ; 89(15): 157601, 2002 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-12366022

RESUMO

Complementary angle-resolved photoemission and bulk-sensitive k-resolved resonant inelastic x-ray scattering of divalent hexaborides reveal a >1 eV X-point gap between the valence and conduction bands, in contradiction to the band overlap assumed in several models of their novel ferromagnetism. This semiconducting gap implies that carriers detected in transport measurements arise from defects, and the measured location of the bulk Fermi level at the bottom of the conduction band implicates boron vacancies as the origin of the excess electrons. The measured band structure and X-point gap in CaB6 additionally provide a stringent test case for many-body quasiparticle band calculations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA