Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 70(14): 4291-4302, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35362967

RESUMO

Fusarium head blight (FHB) caused by pathogenic species of Fusarium fungi is one of the most important diseases of cereal plants and a factor contributing to losses in plant production. The growth of FHB-associated species is often accompanied by biosynthesis of secondary metabolites─mycotoxins, which serve as a virulence factor. The aim of the study was to evaluate the ratios between deoxynivalenol (DON) and nivalenol (NIV) and their derivatives in the ears of six cultivars of winter wheat with varying resistance to FHB, taking into account a range of factors (weather conditions, location, cultivar, and year) after inoculation with Fusarium culmorum, during a 3 year field experiment, 2018-2020. The presence of toxins in the ears was measured within 21 days of inoculation. The toxins were found in the ears as soon as on the third day from the start of the experiment, whereas relative humidity higher than 80% was a decisive factor for FHB incidence. All wheat cultivars showed the ability to biotransform DON and NIV present in the ears to glucosides, that is, deoxynivalenol-3-glucoside (DON-3G) and nivalenol-3-glucoside (NIV-3G). The levels of these metabolites showed significant correlation with the levels of their basic analogues. In most cases, higher levels of DON and NIV in wheat ears and higher levels of their metabolites were observed, but the relative levels of DON-3G/DON and NIV-3G/NIV at relatively high levels of toxins were lower compared to the ear samples with relatively low toxin levels. The presented results are the first studies, which systematically correlate a variety of wheat cultivars with their extent to glucosylate trichothecenes.


Assuntos
Fusarium , Micotoxinas , Tricotecenos , Fusarium/metabolismo , Glucosídeos/metabolismo , Micotoxinas/metabolismo , Doenças das Plantas/microbiologia , Tricotecenos/metabolismo , Triticum/metabolismo
2.
Toxins (Basel) ; 13(2)2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33670424

RESUMO

The transformation of deoxynivalenol (DON), nivalenol (NIV), and their glucosides (DON3G and NIV3G) during the malting of grains of two wheat varieties was studied. The concentration of DON3G and NIV3G started to increase significantly before the concentration of DON and NIV increased. This may reflect the transformation of the parent mycotoxin forms into their glucosides due to xenobiotic detoxification reactions. After a sharp rise during the last 2 days of the process (day 6 and 7), the DON concentration reached 3010 ± 338 µg/kg in the Legenda wheat-based malt and 4678 ± 963 µg/kg in the Pokusa wheat-based malt. The NIV concentration, at 691 ± 65 µg/kg, remained the same as that in the dry grain. The concentration of DON3G in the Legenda and Pokusa wheat-based malt was five and three times higher, respectively, than that in the steeped grain. The concentration of NIV3G in the Legenda wheat-based malt was more than twice as high as that in the steeped grain. The sharp increase in the concentration of DON at the end of the malting process reflected the high pathogen activity. We set aside some samples to study a batch that was left undisturbed without turning and aeration, for the entire period of malting. The concentration of DON in the malt produced from the latter batch was 135% and 337% higher, for Legenda and Pokusa, respectively, than that in the malt produced from the batch that was turned and aerated. The NIV concentration was 22% higher in the latter batch.


Assuntos
Grão Comestível/microbiologia , Manipulação de Alimentos , Microbiologia de Alimentos , Fusarium/metabolismo , Tricotecenos/análise , Triticum/microbiologia , Biotransformação , Glucosídeos , Fatores de Tempo
3.
Toxins (Basel) ; 12(6)2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32545232

RESUMO

An increasing number of studies have found that modified mycotoxins, such as free mycotoxins, naturally occur in food, and severely impact food safety. The present study investigated concentrations of trichothecenes nivalenol (NIV), deoxynivalenol (DON), and zearalenone (ZEN), together with their modified forms, nivalenol-3-glucoside (NIV-3G), deoxynivalenol-3-glucoside (DON-3G), and zearalenone-14-glucoside (ZEN-14G) and zearalenone-14-sulfate (ZEN-14S), respectively, at successive stages of malt loaf production (flour, dough kneading/fermentation, loaf baking). Toxins in bakery products originate in flour produced from wheat grain that is naturally contaminated with Fusarium culmorum. Mycotoxin concentrations were determined using high-performance liquid chromatography-high resolution mass spectrometry, and did not significantly change during the successive stages of bread production. After the dough kneading/fermentation stage, concentrations of NIV-3G and DON-3G were slightly increased, whereas those of ZEN and ZEN-14S were slightly decreased. The largest average decrease (21%) was found in ZEN-14G. After the baking stage, the average concentrations of NIV-3G, DON-3G, ZEN-14S, and ZEN-14G in the loaf crumb and crust decreased by 23%, 28%, 27%, and 20%, respectively, compared with those in the dough. During this technical process, the concentration of ZEN-14G in loaf crumb significantly decreased by an average of 48%, and those of ZEN, ZEN-14S, and ZEN-14G in loaf crust decreased by an average of 29%, 42%, and 48%, respectively. Considering the possibility of modified mycotoxins degradation to free forms, as well as the ability to synthesize them from free forms during technological processes, it would be prudent to consider them together during analysis.


Assuntos
Pão/microbiologia , Grão Comestível/microbiologia , Farinha/microbiologia , Microbiologia de Alimentos , Fusarium/metabolismo , Micotoxinas/metabolismo , Triticum/microbiologia , Biotransformação , Culinária , Fermentação , Temperatura Alta
4.
Arch Microbiol ; 201(8): 1085-1097, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31123790

RESUMO

Essential oils (EOs) are products of plant origin and include mixtures of different chemical compounds. These volatile substances have many interesting properties, including antifungal properties. Fungi may develop under field conditions on crops such as wheat or corn and are able to synthesize mycotoxins, which adversely affect livestock and human health. In the present study, selected EOs were used to inhibit the growth of Fusarium graminearum and F. culmorum and reduce the concentrations of mycotoxins in wheat grain. The EOs significantly inhibited the growth of tested Fusarium species (90.99-99.99%), as determined based on ergosterol quantitative analysis. Only the addition of orange oil to F. culmorum exhibits a different inhibition capacity (68.13%). EO application resulted in a large reduction in zearalenone content (99.08-99.99%); only in the case of orange oil application was the reduction estimated at approximately 68.33%. However, all EOs provided a significant reduction in the concentration levels of group B trichothecenes (94.51-100%). It can be concluded that EOs inhibit the growth of fungi of the genus Fusarium and reduce concentration levels of the mycotoxins zearalenone and group B trichothecenes.


Assuntos
Antifúngicos/farmacologia , Fusarium/efeitos dos fármacos , Óleos Voláteis/farmacologia , Triticum/metabolismo , Zea mays/metabolismo , Fusarium/classificação , Humanos , Micotoxinas/metabolismo , Micotoxinas/toxicidade , Sementes/metabolismo , Tricotecenos/farmacologia
5.
Pathogens ; 9(1)2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31887989

RESUMO

Owing to their rich chemical composition, essential oils (EOs) have many interesting properties, including antimicrobial activities. The presence of Fusarium and their secondary metabolites, mycotoxins, in cereal crops is a serious problem in agriculture, which consequently affects food quality. The aim of the present study was to investigate the effects of selected EOs on the growth of Fusarium graminearum and F. culmorum and the biosynthesis of mycotoxins in maize seeds. Chromatographic analysis of ergosterol as a fungal growth indicator showed a significant inhibition of Fusarium growth (83.24-99.99%) compared to the control samples, which as a consequence resulted in a reduction in mycotoxin concentrations. The addition of cinnamon, palmarosa, orange, and spearmint EOs was shown to be the most effective in reducing zearalenone concentration (99.10-99.92%). Deoxynivalenol analysis confirmed a very high reduction of this compound at the application all tested EOs (90.69-100%). The obtained results indicated that EOs have a great potential to inhibit growth of Fusarium fungi as well as reduce the concentration of mycotoxins in maize seed.

6.
Pol J Microbiol ; 57(3): 205-12, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19004241

RESUMO

The aim of this research was to study the antifungal properties of propionibacteria. Three fractions from cultures of Propionibacterium freudenreichii ssp. shermanii 41 and ssp. freudenreichii 111 (i.e. culture containing viable bacteria, cell-free supernatant and bacteriocin preparation) were tested for their ability to inhibit the growth and mycotoxin production of Alternaria alternata, Fusarium culmorum, Fusarium graminearum and Fusarium verticillioides. The growth of the fungi was monitored during cultivation using a plating method. The concentration of toxins produced was measured by HPLC on the 14th day of culture. Altenuene and tenuazonic acid were determined in cultures of A. alternata whilst concentration of nivalenol, deoxynivalenol, fumonisin B1 and zearalenone was measured in Fusarium cultures. The strongest inhibition of growth and toxin production was observed in the presence of cultures containing viable cells and supernatants obtained from propionibacteria cultures. The bacteriocin extracts generally had a weak fungistatic effect on the growth of A. alternata, F. culmorum and F. graminearum. Despite the fact that growth was slower in the presence of bacteriocin extracts than in control trials, none of the preparations prepared from the propionibacteria significantly reduced the level of mycotoxin production. The ability of P. freudenreichii ssp. freudenreichii 111 to remove zearalenone from liquid medium was also evaluated. It was shown that both viable and non-viable cells caused a decrease in zearalenone concentration in the medium.


Assuntos
Alternaria/metabolismo , Fusarium/metabolismo , Micotoxinas/metabolismo , Propionibacterium/metabolismo , Fermentação , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...