Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Elife ; 82019 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-31566560

RESUMO

Cells respond to changes in their environment through signaling networks that modulate cytoskeleton and membrane organization to coordinate cell-cycle progression, polarized cell growth and multicellular development. Here, we define a novel regulatory mechanism by which the motor activity and function of the fission yeast type one myosin, Myo1, is modulated by TORC2-signalling-dependent phosphorylation. Phosphorylation of the conserved serine at position 742 (S742) within the neck region changes both the conformation of the neck region and the interactions between Myo1 and its associating calmodulin light chains. S742 phosphorylation thereby couples the calcium and TOR signaling networks that are involved in the modulation of myosin-1 dynamics to co-ordinate actin polymerization and membrane reorganization at sites of endocytosis and polarised cell growth in response to environmental and cell-cycle cues.


Assuntos
Adaptação Fisiológica , Cálcio/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/fisiologia , Cadeias Pesadas de Miosina/química , Fosforilação , Conformação Proteica , Proteínas de Schizosaccharomyces pombe/química , Transdução de Sinais
2.
J Cell Sci ; 131(15)2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-29930079

RESUMO

Life is dependent upon the ability of a cell to rapidly respond to changes in the environment. Small perturbations in local environments change the ability of molecules to interact and, hence, communicate. Hydrostatic pressure provides a rapid non-invasive, fully reversible method for modulating affinities between molecules both in vivo and in vitro We have developed a simple fluorescence imaging chamber that allows intracellular protein dynamics and molecular events to be followed at pressures <200 bar in living cells. By using yeast, we investigated the impact of hydrostatic pressure upon cell growth and cell-cycle progression. While 100 bar has no effect upon viability, it induces a delay in chromosome segregation, resulting in the accumulation of long undivided cells that are also bent, consistent with disruption of the cytoskeletons. This delay is independent of stress signalling and induces synchronisation of cell-cycle progression. Equivalent effects were observed in Candida albicans, with pressure inducing a reversible cell-cycle delay and hyphal growth. We present a simple novel non-invasive fluorescence microscopy-based approach to transiently impact molecular dynamics in order to visualise, dissect and study signalling pathways and cellular processes in living cells.


Assuntos
Ciclo Celular/fisiologia , Pressão Hidrostática , Candida albicans/citologia , Candida albicans/metabolismo , Proliferação de Células/fisiologia , Microscopia de Fluorescência , Simulação de Dinâmica Molecular , Schizosaccharomyces/citologia , Schizosaccharomyces/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA