Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Evol ; 40(9)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37562011

RESUMO

In this study, we report 21 ancient shotgun genomes from present-day Western Hungary, from previously understudied Late Copper Age Baden, and Bronze Age Somogyvár-Vinkovci, Kisapostag, and Encrusted Pottery archeological cultures (3,530-1,620 cal Bce). Our results indicate the presence of high steppe ancestry in the Somogyvár-Vinkovci culture. They were then replaced by the Kisapostag group, who exhibit an outstandingly high (up to ∼47%) Mesolithic hunter-gatherer ancestry, despite this component being thought to be highly diluted by the time of the Early Bronze Age. The Kisapostag population contributed the genetic basis for the succeeding community of the Encrusted Pottery culture. We also found an elevated hunter-gatherer component in a local Baden culture-associated individual, but no connections were proven to the Bronze Age individuals. The hunter-gatherer ancestry in Kisapostag is likely derived from two main sources, one from a Funnelbeaker or Globular Amphora culture-related population and one from a previously unrecognized source in Eastern Europe. We show that this ancestry not only appeared in various groups in Bronze Age Central Europe but also made contributions to Baltic populations. The social structure of Kisapostag and Encrusted Pottery cultures is patrilocal, similarly to most contemporaneous groups. Furthermore, we developed new methods and method standards for computational analyses of ancient DNA, implemented to our newly developed and freely available bioinformatic package. By analyzing clinical traits, we found carriers of aneuploidy and inheritable genetic diseases. Finally, based on genetic and anthropological data, we present here the first female facial reconstruction from the Bronze Age Carpathian Basin.


Assuntos
Genoma Humano , Migração Humana , Humanos , História Antiga , Hungria , Europa (Continente) , DNA Antigo
2.
Front Plant Sci ; 12: 658987, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093616

RESUMO

Iron (Fe) is an essential micronutrient for plants. Due to the requirement for Fe of the photosynthetic apparatus, the majority of shoot Fe content is localised in the chloroplasts of mesophyll cells. The reduction-based mechanism has prime importance in the Fe uptake of chloroplasts operated by Ferric Reductase Oxidase 7 (FRO7) in the inner chloroplast envelope membrane. Orthologue of Arabidopsis thaliana FRO7 was identified in the Brassica napus genome. GFP-tagged construct of BnFRO7 showed integration to the chloroplast. The time-scale expression pattern of BnFRO7 was studied under three different conditions: deficient, optimal, and supraoptimal Fe nutrition in both leaves developed before and during the treatments. Although Fe deficiency has not increased BnFRO7 expression, the slight overload in the Fe nutrition of the plants induced significant alterations in both the pattern and extent of its expression leading to the transcript level suppression. The Fe uptake of isolated chloroplasts decreased under both Fe deficiency and supraoptimal Fe nutrition. Since the enzymatic characteristics of the ferric chelate reductase (FCR) activity of purified chloroplast inner envelope membranes showed a significant loss for the substrate affinity with an unchanged saturation rate, protein level regulation mechanisms are suggested to be also involved in the suppression of the reduction-based Fe uptake of chloroplasts together with the saturation of the requirement for Fe.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...