Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
BMC Genomics ; 24(1): 783, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110872

RESUMO

BACKGROUND: Genomic rearrangements in cancer cells can create fusion genes that encode chimeric proteins or alter the expression of coding and non-coding RNAs. In some cancer types, fusions involving specific kinases are used as targets for therapy. Fusion genes can be detected by whole genome sequencing (WGS) and targeted fusion panels, but RNA sequencing (RNA-Seq) has the advantageous capability of broadly detecting expressed fusion transcripts. RESULTS: We developed a pipeline for validation of fusion transcripts identified in RNA-Seq data using matched WGS data from The Cancer Genome Atlas (TCGA) and applied it to 910 tumors from 11 different cancer types. This resulted in 4237 validated gene fusions, 3049 of them with at least one identified genomic breakpoint. Utilizing validated fusions as true positive events, we trained a machine learning classifier to predict true and false positive fusion transcripts from RNA-Seq data. The final precision and recall metrics of the classifier were 0.74 and 0.71, respectively, in an independent dataset of 249 breast tumors. Application of this classifier to all samples with RNA-Seq data from these cancer types vastly extended the number of likely true positive fusion transcripts and identified many potentially targetable kinase fusions. Further analysis of the validated gene fusions suggested that many are created by intrachromosomal amplification events with microhomology-mediated non-homologous end-joining. CONCLUSIONS: A classifier trained on validated fusion events increased the accuracy of fusion transcript identification in samples without WGS data. This allowed the analysis to be extended to all samples with RNA-Seq data, facilitating studies of tumor biology and increasing the number of detected kinase fusions. Machine learning could thus be used in identification of clinically relevant fusion events for targeted therapy. The large dataset of validated gene fusions generated here presents a useful resource for development and evaluation of fusion transcript detection algorithms.


Assuntos
Neoplasias , Humanos , Neoplasias/genética , Genômica/métodos , Algoritmos , Fusão Gênica , RNA , Análise de Sequência de RNA/métodos
2.
BMC Bioinformatics ; 24(1): 359, 2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37741966

RESUMO

BACKGROUND: In cancer, genomic rearrangements can create fusion genes that either combine protein-coding sequences from two different partner genes or place one gene under the control of the promoter of another gene. These fusion genes can act as oncogenic drivers in tumor development and several fusions involving kinases have been successfully exploited as drug targets. Expressed fusions can be identified in RNA sequencing (RNA-Seq) data, but fusion prediction software often has a high fraction of false positive fusion transcript predictions. This is problematic for both research and clinical applications. RESULTS: We describe a method for validation of fusion transcripts detected by RNA-Seq in matched whole-genome sequencing (WGS) data. Our pipeline uses discordant read pairs to identify supported fusion events and analyzes soft-clipped read alignments to determine genomic breakpoints. We have tested it on matched RNA-Seq and WGS data for both tumors and cancer cell lines and show that it can be used to validate both new predicted gene fusions and experimentally validated fusion events. It was considerably faster and more sensitive than using BreakDancer and Manta, software that is instead designed to detect many different types of structural variants on a genome-wide scale. CONCLUSIONS: We have developed a fast and very sensitive pipeline for validation of gene fusions detected by RNA-Seq in matched WGS data. It can be used to identify high-quality gene fusions for further bioinformatic and experimental studies, including validation of genomic breakpoints and studies of the mechanisms that generate fusions. In a clinical setting, it could help find expressed gene fusions for personalized therapy.


Assuntos
Biologia Computacional , Genômica , Sequenciamento Completo do Genoma , Linhagem Celular , Sistemas de Liberação de Medicamentos
3.
NPJ Breast Cancer ; 8(1): 94, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35974007

RESUMO

Multigene assays for molecular subtypes and biomarkers can aid management of early invasive breast cancer. Using RNA-sequencing we aimed to develop single-sample predictor (SSP) models for clinical markers, subtypes, and risk of recurrence (ROR). A cohort of 7743 patients was divided into training and test set. We trained SSPs for subtypes and ROR assigned by nearest-centroid (NC) methods and SSPs for biomarkers from histopathology. Classifications were compared with Prosigna in two external cohorts (ABiM, n = 100 and OSLO2-EMIT0, n = 103). Prognostic value was assessed using distant recurrence-free interval. Agreement between SSP and NC for PAM50 (five subtypes) was high (85%, Kappa = 0.78) for Subtype (four subtypes) very high (90%, Kappa = 0.84) and for ROR risk category high (84%, Kappa = 0.75, weighted Kappa = 0.90). Prognostic value was assessed as equivalent and clinically relevant. Agreement with histopathology was very high or high for receptor status, while moderate for Ki67 status and poor for Nottingham histological grade. SSP and Prosigna concordance was high for subtype (OSLO-EMIT0 83%, Kappa = 0.73 and ABiM 80%, Kappa = 0.72) and moderate and high for ROR risk category (68 and 84%, Kappa = 0.50 and 0.70, weighted Kappa = 0.70 and 0.78). Pooled concordance for emulated treatment recommendation dichotomized for chemotherapy was high (85%, Kappa = 0.66). Retrospective evaluation suggested that SSP application could change chemotherapy recommendations for up to 17% of postmenopausal ER+/HER2-/N0 patients with balanced escalation and de-escalation. Results suggest that NC and SSP models are interchangeable on a group-level and nearly so on a patient level and that SSP models can be derived to closely match clinical tests.

4.
Commun Biol ; 5(1): 834, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35982125

RESUMO

Long non-coding RNAs (lncRNAs) are involved in breast cancer pathogenesis through chromatin remodeling, transcriptional and post-transcriptional gene regulation. We report robust associations between lncRNA expression and breast cancer clinicopathological features in two population-based cohorts: SCAN-B and TCGA. Using co-expression analysis of lncRNAs with protein coding genes, we discovered three distinct clusters of lncRNAs. In silico cell type deconvolution coupled with single-cell RNA-seq analyses revealed that these three clusters were driven by cell type specific expression of lncRNAs. In one cluster lncRNAs were expressed by cancer cells and were mostly associated with the estrogen signaling pathways. In the two other clusters, lncRNAs were expressed either by immune cells or fibroblasts of the tumor microenvironment. To further investigate the cis-regulatory regions driving lncRNA expression in breast cancer, we identified subtype-specific transcription factor (TF) occupancy at lncRNA promoters. We also integrated lncRNA expression with DNA methylation data to identify long-range regulatory regions for lncRNA which were validated using ChiA-Pet-Pol2 loops. lncRNAs play an important role in shaping the gene regulatory landscape in breast cancer. We provide a detailed subtype and cell type-specific expression of lncRNA, which improves the understanding of underlying transcriptional regulation in breast cancer.


Assuntos
Neoplasias da Mama , RNA Longo não Codificante , Neoplasias da Mama/patologia , Metilação de DNA , Feminino , Regulação da Expressão Gênica , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Microambiente Tumoral
5.
Int J Cancer ; 151(1): 95-106, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35182081

RESUMO

Genomic rearrangements in cancer cells can create gene fusions where the juxtaposition of two different genes leads to the production of chimeric proteins or altered gene expression through promoter-swapping. We have previously shown that fusion transcripts involving microRNA (miRNA) host genes contribute to deregulation of miRNA expression regardless of the protein-coding potential of these transcripts. Many different genes can also be used as 5' partners by a miRNA host gene in what we named recurrent miRNA-convergent fusions. Here, we have explored the properties of 5' partners in fusion transcripts that involve miRNA hosts in breast tumours from The Cancer Genome Atlas (TCGA). We hypothesised that firstly, 5' partner genes should belong to pathways and transcriptional programmes that reflect the tumour phenotype and secondly, there should be a selection for fusion events that shape miRNA expression to benefit the tumour cell through the known hallmarks of cancer. We found that the set of 5' partners in miRNA host fusions is non-random, with overrepresentation of highly expressed genes in pathways active in cancer including epithelial-to-mesenchymal transition, translational regulation and oestrogen signalling. Furthermore, many miRNAs were upregulated in samples with host gene fusions, including established oncogenic miRNAs such as mir-21 and the mir-106b~mir-93~mir-25 cluster. To the list of mechanisms for deregulation of miRNA expression, we have added fusion transcripts that change the promoter region. We propose that this adds material for genetic selection and tumour evolution in cancer cells and that miRNA host fusions can act as tumour 'drivers'.


Assuntos
Neoplasias da Mama , MicroRNAs , Neoplasias da Mama/patologia , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Fusão Gênica , Redes Reguladoras de Genes , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo
6.
JNCI Cancer Spectr ; 5(2)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33937624

RESUMO

Background: More than three-quarters of primary breast cancers are positive for estrogen receptor alpha (ER; encoded by the gene ESR1), the most important factor for directing anti-estrogenic endocrine therapy (ET). Recently, mutations in ESR1 were identified as acquired mechanisms of resistance to ET, found in 12% to 55% of metastatic breast cancers treated previously with ET. Methods: We analyzed 3217 population-based invasive primary (nonmetastatic) breast cancers (within the SCAN-B study, ClinicalTrials.gov NCT02306096), sampled from initial diagnosis prior to any treatment, for the presence of ESR1 mutations using RNA sequencing. Mutations were verified by droplet digital polymerase chain reaction on tumor and normal DNA. Patient outcomes were analyzed using Kaplan-Meier estimation and a series of 2-factor Cox regression multivariable analyses. Results: We identified ESR1 resistance mutations in 30 tumors (0.9%), of which 29 were ER positive (1.1%). In ET-treated disease, presence of ESR1 mutation was associated with poor relapse-free survival and overall survival (2-sided log-rank test P < .001 and P = .008, respectively), with hazard ratios of 3.00 (95% confidence interval = 1.56 to 5.88) and 2.51 (95% confidence interval = 1.24 to 5.07), respectively, which remained statistically significant when adjusted for other prognostic factors. Conclusions: These population-based results indicate that ESR1 mutations at diagnosis of primary breast cancer occur in about 1% of women and identify for the first time in the adjuvant setting that such preexisting mutations are associated to eventual resistance to standard hormone therapy. If replicated, tumor ESR1 screening should be considered in ER-positive primary breast cancer, and for patients with mutated disease, ER degraders such as fulvestrant or other therapeutic options may be considered as more appropriate.


Assuntos
Neoplasias da Mama/genética , Resistencia a Medicamentos Antineoplásicos/genética , Receptor alfa de Estrogênio/genética , Mutação , Antineoplásicos Hormonais/uso terapêutico , Neoplasias da Mama/química , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Intervalos de Confiança , Intervalo Livre de Doença , Antagonistas do Receptor de Estrogênio/uso terapêutico , Feminino , Fulvestranto/uso terapêutico , Humanos , Estimativa de Kaplan-Meier , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Análise de Sequência de RNA
8.
Breast Cancer Res ; 23(1): 20, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568222

RESUMO

BACKGROUND: Breast cancer in young adults has been implicated with a worse outcome. Analyses of genomic traits associated with age have been heterogenous, likely because of an incomplete accounting for underlying molecular subtypes. We aimed to resolve whether triple-negative breast cancer (TNBC) in younger versus older patients represent similar or different molecular diseases in the context of genetic and transcriptional subtypes and immune cell infiltration. PATIENTS AND METHODS: In total, 237 patients from a reported population-based south Swedish TNBC cohort profiled by RNA sequencing and whole-genome sequencing (WGS) were included. Patients were binned in 10-year intervals. Complimentary PD-L1 and CD20 immunohistochemistry and estimation of tumor-infiltrating lymphocytes (TILs) were performed. Cases were analyzed for differences in patient outcome, genomic, transcriptional, and immune landscape features versus age at diagnosis. Additionally, 560 public WGS breast cancer profiles were used for validation. RESULTS: Median age at diagnosis was 62 years (range 26-91). Age was not associated with invasive disease-free survival or overall survival after adjuvant chemotherapy. Among the BRCA1-deficient cases (82/237), 90% were diagnosed before the age of 70 and were predominantly of the basal-like subtype. In the full TNBC cohort, reported associations of patient age with changes in Ki67 expression, PIK3CA mutations, and a luminal androgen receptor subtype were confirmed. Within DNA repair deficiency or gene expression defined molecular subgroups, age-related alterations in, e.g., overall gene expression, immune cell marker gene expression, genetic mutational and rearrangement signatures, amount of copy number alterations, and tumor mutational burden did, however, not appear distinct. Similar non-significant associations for genetic alterations with age were obtained for other breast cancer subgroups in public WGS data. Consistent with age-related immunosenescence, TIL counts decreased linearly with patient age across different genetic TNBC subtypes. CONCLUSIONS: Age-related alterations in TNBC, as well as breast cancer in general, need to be viewed in the context of underlying genomic phenotypes. Based on this notion, age at diagnosis alone does not appear to provide an additional layer of biological complexity above that of proposed genetic and transcriptional phenotypes of TNBC. Consequently, treatment decisions should be less influenced by age and more driven by tumor biology.


Assuntos
Biomarcadores Tumorais , Neoplasias de Mama Triplo Negativas/etiologia , Adulto , Fatores Etários , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Quimioterapia Adjuvante , Variações do Número de Cópias de DNA , Suscetibilidade a Doenças , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Pessoa de Meia-Idade , Mutação , Gradação de Tumores , Estadiamento de Neoplasias , Vigilância da População , Prognóstico , Suécia/epidemiologia , Resultado do Tratamento , Neoplasias de Mama Triplo Negativas/epidemiologia , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
9.
EMBO Mol Med ; 12(10): e12118, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-32926574

RESUMO

Breast cancer is a disease of genomic alterations, of which the panorama of somatic mutations and how these relate to subtypes and therapy response is incompletely understood. Within SCAN-B (ClinicalTrials.gov: NCT02306096), a prospective study elucidating the transcriptomic profiles for thousands of breast cancers, we developed a RNA-seq pipeline for detection of SNVs/indels and profiled a real-world cohort of 3,217 breast tumors. We describe the mutational landscape of primary breast cancer viewed through the transcriptome of a large population-based cohort and relate it to patient survival. We demonstrate that RNA-seq can be used to call mutations in genes such as PIK3CA, TP53, and ERBB2, as well as the status of molecular pathways and mutational burden, and identify potentially druggable mutations in 86.8% of tumors. To make this rich dataset available for the research community, we developed an open source web application, the SCAN-B MutationExplorer (http://oncogenomics.bmc.lu.se/MutationExplorer). These results add another dimension to the use of RNA-seq as a clinical tool, where both gene expression- and mutation-based biomarkers can be interrogated in real-time within 1 week of tumor sampling.


Assuntos
Neoplasias da Mama , Transcriptoma , Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Análise Mutacional de DNA , Feminino , Humanos , Mutação , Estudos Prospectivos
10.
NPJ Breast Cancer ; 6: 28, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32656317

RESUMO

The extent and composition of the immune response in a breast cancer is one important prognostic factor for the disease. The aim of the current work was to refine the analysis of the humoral component of an immune response in breast tumors by quantifying mRNA expression of different immunoglobulin classes and study their association with prognosis. We used RNA-Seq data from two local population-based breast cancer cohorts to determine the expression of IGJ and immunoglobulin heavy (IGH) chain-encoding RNAs. The association with prognosis was investigated and public data sets were used to corroborate the findings. Except for IGHE and IGHD, mRNAs encoding heavy chains were generally detected at substantial levels and correlated with other immune-related genes. High IGHG1 mRNA was associated with factors related to poor prognosis such as estrogen receptor negativity, HER2 amplification, and high grade, whereas high IGHA2 mRNA levels were primarily associated with lower age at diagnosis. High IGHA2 and IGJ mRNA levels were associated with a more favorable prognosis both in univariable and multivariable Cox models. When adjusting for other prognostic factors, high IGHG1 mRNA levels were positively associated with improved prognosis. To our knowledge, these results are the first to demonstrate that expression of individual Ig class types has prognostic implications in breast cancer.

11.
Nat Commun ; 11(1): 3747, 2020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32719340

RESUMO

Homologous recombination deficiency (HRD) is a defining characteristic in BRCA-deficient breast tumors caused by genetic or epigenetic alterations in key pathway genes. We investigated the frequency of BRCA1 promoter hypermethylation in 237 triple-negative breast cancers (TNBCs) from a population-based study using reported whole genome and RNA sequencing data, complemented with analyses of genetic, epigenetic, transcriptomic and immune infiltration phenotypes. We demonstrate that BRCA1 promoter hypermethylation is twice as frequent as BRCA1 pathogenic variants in early-stage TNBC and that hypermethylated and mutated cases have similarly improved prognosis after adjuvant chemotherapy. BRCA1 hypermethylation confers an HRD, immune cell type, genome-wide DNA methylation, and transcriptional phenotype similar to TNBC tumors with BRCA1-inactivating variants, and it can be observed in matched peripheral blood of patients with tumor hypermethylation. Hypermethylation may be an early event in tumor development that progress along a common pathway with BRCA1-mutated disease, representing a promising DNA-based biomarker for early-stage TNBC.


Assuntos
Proteína BRCA1/genética , Mutação/genética , Neoplasias de Mama Triplo Negativas/genética , Adulto , Idoso , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Proteína BRCA1/deficiência , Estudos de Coortes , Metilação de DNA/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Pessoa de Meia-Idade , Fenótipo , Prognóstico , Regiões Promotoras Genéticas , Transcrição Gênica , Resultado do Tratamento , Neoplasias de Mama Triplo Negativas/sangue , Neoplasias de Mama Triplo Negativas/diagnóstico , Neoplasias de Mama Triplo Negativas/terapia
12.
Int J Cancer ; 146(12): 3343-3353, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32067223

RESUMO

Genomic rearrangements in cancer can join the sequences of two separate genes. Studies of such gene fusion events have mainly focused on identification of fusion proteins from the chimeric transcripts. We have previously investigated how fusions instead can affect the expression of intronic microRNA (miRNA) genes that are encoded within fusion gene partners. Here, we extend our analysis to small nucleolar RNAs (snoRNAs) that also are embedded within protein-coding or noncoding host genes. We found that snoRNA hosts are selectively enriched in fusion transcripts, like miRNA host genes, and that this enrichment is associated with all snoRNA classes. These structural changes may have functional consequences for the cell; proteins involved in the protein translation machinery are overrepresented among snoRNA host genes, a gene architecture assumed to be needed for closely coordinated expression of snoRNAs and host proteins. Our data indicate that this structure is frequently disrupted in cancer. We furthermore observed that snoRNA genes involved in fusions tend to associate with stronger promoters than the natural host, suggesting a mechanism that selects for snoRNA overexpression. In summary, we highlight a previously unexplored frequent structural change in cancer that affects important components of cellular physiology.


Assuntos
Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica , Rearranjo Gênico , RNA Mensageiro/genética , RNA Nucleolar Pequeno/genética , Elementos Alu/genética , Feminino , Humanos , Íntrons/genética , Regiões Promotoras Genéticas/genética , Estudos Prospectivos , RNA-Seq
13.
Pigment Cell Melanoma Res ; 33(3): 480-489, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31811783

RESUMO

Chronic sun-damaged (CSD) melanoma represents 10%-20% of cutaneous melanomas and is characterized by infrequent BRAF V600E mutations and high mutational load. However, the order of genetic events or the extent of intra-tumor heterogeneity (ITH) in CSDhigh melanoma is still unknown. Ultra-deep targeted sequencing of 40 cancer-associated genes was performed in 72 in situ or invasive CMM, including 23 CSDhigh cases. In addition, we performed whole exome and RNA sequencing on multiple regions of primary tumor and multiple in-transit metastases from one CSDhigh melanoma patient. We found no significant difference in mutation frequency in melanoma-related genes or in mutational load between in situ and invasive CSDhigh lesions, while this difference was observed in CSDlow lesions. In addition, increased frequency of BRAF V600K, NF1, and TP53 mutations (p < .01, Fisher's exact test) was found in CSDhigh melanomas. Sequencing of multiple specimens from one CSDhigh patient revealed strikingly limited ITH with >95% shared mutations. Our results provide evidence that CSDhigh and CSDlow melanomas are distinct molecular entities that progress via different genetic routes.


Assuntos
Heterogeneidade Genética , Melanoma/genética , Luz Solar/efeitos adversos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma in Situ/genética , Carcinoma in Situ/patologia , Doença Crônica , Estudos de Coortes , Variações do Número de Cópias de DNA/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Melanoma/patologia , Pessoa de Meia-Idade , Mutação/genética , Invasividade Neoplásica , Oncogenes , Transcrição Gênica , Adulto Jovem
14.
Nat Med ; 25(10): 1526-1533, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31570822

RESUMO

Whole-genome sequencing (WGS) brings comprehensive insights to cancer genome interpretation. To explore the clinical value of WGS, we sequenced 254 triple-negative breast cancers (TNBCs) for which associated treatment and outcome data were collected between 2010 and 2015 via the population-based Sweden Cancerome Analysis Network-Breast (SCAN-B) project (ClinicalTrials.gov ID:NCT02306096). Applying the HRDetect mutational-signature-based algorithm to classify tumors, 59% were predicted to have homologous-recombination-repair deficiency (HRDetect-high): 67% explained by germline/somatic mutations of BRCA1/BRCA2, BRCA1 promoter hypermethylation, RAD51C hypermethylation or biallelic loss of PALB2. A novel mechanism of BRCA1 abrogation was discovered via germline SINE-VNTR-Alu retrotransposition. HRDetect provided independent prognostic information, with HRDetect-high patients having better outcome on adjuvant chemotherapy for invasive disease-free survival (hazard ratio (HR) = 0.42; 95% confidence interval (CI) = 0.2-0.87) and distant relapse-free interval (HR = 0.31, CI = 0.13-0.76) compared to HRDetect-low, regardless of whether a genetic/epigenetic cause was identified. HRDetect-intermediate, some possessing potentially targetable biological abnormalities, had the poorest outcomes. HRDetect-low cancers also had inadequate outcomes: ~4.7% were mismatch-repair-deficient (another targetable defect, not typically sought) and they were enriched for (but not restricted to) PIK3CA/AKT1 pathway abnormalities. New treatment options need to be considered for now-discernible HRDetect-intermediate and HRDetect-low categories. This population-based study advocates for WGS of TNBC to better inform trial stratification and improve clinical decision-making.


Assuntos
Recidiva Local de Neoplasia/genética , Prognóstico , Neoplasias de Mama Triplo Negativas/genética , Sequenciamento Completo do Genoma , Adulto , Idoso , Idoso de 80 Anos ou mais , Metilação de DNA/genética , Intervalo Livre de Doença , Feminino , Genética Populacional , Mutação em Linhagem Germinativa/genética , Humanos , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/epidemiologia , Recidiva Local de Neoplasia/patologia , Regiões Promotoras Genéticas , Neoplasias de Mama Triplo Negativas/epidemiologia , Neoplasias de Mama Triplo Negativas/patologia
15.
Breast Cancer Res Treat ; 178(2): 459-467, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31432367

RESUMO

PURPOSE: Oestrogen receptor-positive (ER+) and human epidermal receptor 2-negative (HER2-) breast cancers are classified as Luminal A or B based on gene expression, but immunohistochemical markers are used for surrogate subtyping. The aims of this study were to examine the agreement between molecular subtyping (MS) and surrogate subtyping and to identify subgroups consisting mainly of Luminal A or B tumours. METHODS: The cohort consisted of 2063 patients diagnosed between 2013-2017, with primary ER+/HER2- breast cancer, analysed by RNA sequencing. Surrogate subtyping was performed according to three algorithms (St. Gallen 2013, Maisonneuve and our proposed Grade-based classification). Agreement (%) and kappa statistics (κ) were used as concordance measures and ROC analysis for luminal distinction. Ki67, progesterone receptor (PR) and histological grade (HG) were further investigated as surrogate markers. RESULTS: The agreement rates between the MS and St. Gallen 2013, Maisonneuve and Grade-based classifications were 62% (κ = 0.30), 66% (κ = 0.35) and 70% (κ = 0.41), respectively. PR did not contribute to distinguishing Luminal A from B tumours (auROC = 0.56). By classifying HG1-2 tumours as Luminal A-like and HG3 as Luminal B-like, agreement with MS was 80% (κ = 0.46). Moreover, by combining HG and Ki67 status, a large subgroup of patients (51% of the cohort) having > 90% Luminal A tumours could be identified. CONCLUSIONS: Agreement between MS and surrogate classifications was generally poor. However, a post hoc analysis showed that a combination of HG and Ki67 could identify patients very likely to have Luminal A tumours according to MS.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/etiologia , Neoplasias da Mama/epidemiologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Técnicas de Diagnóstico Molecular , Gradação de Tumores , Estadiamento de Neoplasias , Vigilância da População , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Carga Tumoral
16.
Sci Rep ; 9(1): 12184, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31434940

RESUMO

Multigene expression signatures provide a molecular subdivision of early breast cancer associated with patient outcome. A gap remains in the validation of such signatures in clinical treatment groups of patients within population-based cohorts of unselected primary breast cancer representing contemporary disease stages and current treatments. A cohort of 3520 resectable breast cancers with RNA sequencing data included in the population-based SCAN-B initiative (ClinicalTrials.gov ID NCT02306096) were selected from a healthcare background population of 8587 patients diagnosed within the years 2010-2015. RNA profiles were classified according to 19 reported gene signatures including both gene expression subtypes (e.g. PAM50, IC10, CIT) and risk predictors (e.g. Oncotype DX, 70-gene, ROR). Classifications were analyzed in nine adjuvant clinical assessment groups: TNBC-ACT (adjuvant chemotherapy, n = 239), TNBC-untreated (n = 82), HER2+/ER- with anti-HER2+ ACT treatment (n = 110), HER2+/ER+ with anti-HER2 + ACT + endocrine treatment (n = 239), ER+/HER2-/LN- with endocrine treatment (n = 1113), ER+/HER2-/LN- with endocrine + ACT treatment (n = 243), ER+/HER2-/LN+ with endocrine treatment (n = 423), ER+/HER2-/LN+ with endocrine + ACT treatment (n = 433), and ER+/HER2-/LN- untreated (n = 200). Gene signature classification (e.g., proportion low-, high-risk) was generally well aligned with stratification based on current immunohistochemistry-based clinical practice. Most signatures did not provide any further risk stratification in TNBC and HER2+/ER- disease. Risk classifier agreement (low-, medium/intermediate-, high-risk groups) in ER+ assessment groups was on average 50-60% with occasional pair-wise comparisons having <30% agreement. Disregarding the intermediate-risk groups, the exact agreement between low- and high-risk groups was on average ~80-95%, for risk prediction signatures across all assessment groups. Outcome analyses were restricted to assessment groups of TNBC-ACT and endocrine treated ER+/HER2-/LN- and ER+/HER2-/LN+ cases. For ER+/HER2- disease, gene signatures appear to contribute additional prognostic value even at a relatively short follow-up time. Less apparent prognostic value was observed in the other groups for the tested signatures. The current study supports the usage of gene expression signatures in specific clinical treatment groups within population-based breast cancer. It also stresses the need of further development to reach higher consensus in individual patient classifications, especially for intermediate-risk patients, and the targeting of patients where current gene signatures and prognostic variables provide little support in clinical decision-making.


Assuntos
Receptor ErbB-2/genética , Receptores de Estrogênio/genética , Transcriptoma , Neoplasias de Mama Triplo Negativas/patologia , Antineoplásicos Hormonais/uso terapêutico , Quimioterapia Adjuvante , Bases de Dados Genéticas , Feminino , Seguimentos , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Prognóstico , Receptor ErbB-2/metabolismo , Receptores de Estrogênio/metabolismo , Risco , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/mortalidade
17.
Clin Cancer Res ; 25(21): 6368-6381, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31340938

RESUMO

PURPOSE: More than 70% of patients with breast cancer present with node-negative disease, yet all undergo surgical axillary staging. We aimed to define predictors of nodal metastasis using clinicopathological characteristics (CLINICAL), gene expression data (GEX), and mixed features (MIXED) and to identify patients at low risk of metastasis who might be spared sentinel lymph node biopsy (SLNB).Experimental Design: Breast tumors (n = 3,023) from the population-based Sweden Cancerome Analysis Network-Breast initiative were profiled by RNA sequencing and linked to clinicopathologic characteristics. Seven machine-learning models present the discriminative ability of N0/N+ in development (n = 2,278) and independent validation cohorts (n = 745) stratified as ER+HER2-, HER2+, and TNBC. Possible SLNB reduction rates are proposed by applying CLINICAL and MIXED predictors. RESULTS: In the validation cohort, the MIXED predictor showed the highest area under ROC curves to assess nodal metastasis; AUC = 0.72. For the subgroups, the AUCs for MIXED, CLINICAL, and GEX predictors ranged from 0.66 to 0.72, 0.65 to 0.73, and 0.58 to 0.67, respectively. Enriched proliferation metagene and luminal B features were noticed in node-positive ER+HER2- and HER2+ tumors, while upregulated basal-like features were observed in node-negative TNBC tumors. The SLNB reduction rates in patients with ER+HER2- tumors were 6% to 7% higher for the MIXED predictor compared with the CLINICAL predictor accepting false negative rates of 5% to 10%. CONCLUSIONS: Although CLINICAL and MIXED predictors of nodal metastasis had comparable accuracy, the MIXED predictor identified more node-negative patients. This translational approach holds promise for development of classifiers to reduce the rates of SLNB for patients at low risk of nodal involvement.


Assuntos
Neoplasias da Mama/diagnóstico , Metástase Linfática/diagnóstico , Proteínas de Neoplasias/genética , Neoplasias de Mama Triplo Negativas/diagnóstico , Adulto , Idoso , Biomarcadores Tumorais/genética , Neoplasias da Mama/classificação , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Intervalo Livre de Doença , Receptor alfa de Estrogênio/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Excisão de Linfonodo/métodos , Metástase Linfática/genética , Metástase Linfática/patologia , Aprendizado de Máquina , Pessoa de Meia-Idade , Receptor ErbB-2/genética , Linfonodo Sentinela/metabolismo , Linfonodo Sentinela/patologia , Biópsia de Linfonodo Sentinela , Análise de Sequência de RNA , Suécia/epidemiologia , Neoplasias de Mama Triplo Negativas/classificação , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia
18.
Cell Rep ; 27(12): 3573-3586.e7, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31216476

RESUMO

The X-linked DDX3X gene encodes an ATP-dependent DEAD-box RNA helicase frequently altered in various human cancers, including melanomas. Despite its important roles in translation and splicing, how DDX3X dysfunction specifically rewires gene expression in melanoma remains completely unknown. Here, we uncover a DDX3X-driven post-transcriptional program that dictates melanoma phenotype and poor disease prognosis. Through an unbiased analysis of translating ribosomes, we identified the microphthalmia-associated transcription factor, MITF, as a key DDX3X translational target that directs a proliferative-to-metastatic phenotypic switch in melanoma cells. Mechanistically, DDX3X controls MITF mRNA translation via an internal ribosome entry site (IRES) embedded within the 5' UTR. Through this exquisite translation-based regulatory mechanism, DDX3X steers MITF protein levels dictating melanoma metastatic potential in vivo and response to targeted therapy. Together, these findings unravel a post-transcriptional layer of gene regulation that may provide a unique therapeutic vulnerability in aggressive male melanomas.


Assuntos
Reprogramação Celular , RNA Helicases DEAD-box/metabolismo , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Regulação da Expressão Gênica , Melanoma/secundário , Biossíntese de Proteínas/genética , Animais , Proliferação de Células , RNA Helicases DEAD-box/genética , Feminino , Genes Ligados ao Cromossomo X , Humanos , Sítios Internos de Entrada Ribossomal , Metástase Linfática , Masculino , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Prognóstico
19.
Nat Med ; 24(4): 463-473, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29529015

RESUMO

Breast tumors of the basal-like, hormone receptor-negative subtype remain an unmet clinical challenge, as there is high rate of recurrence and poor survival in patients following treatment. Coevolution of the malignant mammary epithelium and its underlying stroma instigates cancer-associated fibroblasts (CAFs) to support most, if not all, hallmarks of cancer progression. Here we delineate a previously unappreciated role for CAFs as determinants of the molecular subtype of breast cancer. We identified paracrine crosstalk between cancer cells expressing platelet-derived growth factor (PDGF)-CC and CAFs expressing the cognate receptors in human basal-like mammary carcinomas. Genetic or pharmacological intervention of PDGF-CC activity in mouse models of cancer resulted in conversion of basal-like breast cancers into a hormone receptor-positive state that enhanced sensitivity to endocrine therapy in previously resistant tumors. We conclude that specification of breast cancer to the basal-like subtype is under microenvironmental control and is therapeutically actionable.


Assuntos
Neoplasias da Mama/patologia , Linfocinas/metabolismo , Comunicação Parácrina , Fator de Crescimento Derivado de Plaquetas/metabolismo , Microambiente Tumoral , Animais , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/irrigação sanguínea , Fibroblastos Associados a Câncer/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Células Epiteliais/metabolismo , Receptor alfa de Estrogênio/metabolismo , Feminino , Fibrose , Humanos , Linfocinas/deficiência , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Neovascularização Patológica/patologia , Fator de Crescimento Derivado de Plaquetas/deficiência , Prognóstico , Modelos de Riscos Proporcionais , Transdução de Sinais , Células Estromais/patologia , Análise de Sobrevida , Resultado do Tratamento
20.
Artigo em Inglês | MEDLINE | ID: mdl-32913985

RESUMO

PURPOSE: In early breast cancer (BC), five conventional biomarkers-estrogen receptor (ER), progesterone receptor (PgR), human epidermal growth factor receptor 2 (HER2), Ki67, and Nottingham histologic grade (NHG)-are used to determine prognosis and treatment. We aimed to develop classifiers for these biomarkers that were based on tumor mRNA sequencing (RNA-seq), compare classification performance, and test whether such predictors could add value for risk stratification. METHODS: In total, 3,678 patients with BC were studied. For 405 tumors, a comprehensive multi-rater histopathologic evaluation was performed. Using RNA-seq data, single-gene classifiers and multigene classifiers (MGCs) were trained on consensus histopathology labels. Trained classifiers were tested on a prospective population-based series of 3,273 BCs that included a median follow-up of 52 months (Sweden Cancerome Analysis Network-Breast [SCAN-B], ClinicalTrials.gov identifier: NCT02306096), and results were evaluated by agreement statistics and Kaplan-Meier and Cox survival analyses. RESULTS: Pathologist concordance was high for ER, PgR, and HER2 (average κ, 0.920, 0.891, and 0.899, respectively) but moderate for Ki67 and NHG (average κ, 0.734 and 0.581). Concordance between RNA-seq classifiers and histopathology for the independent cohort of 3,273 was similar to interpathologist concordance. Patients with discordant classifications, predicted as hormone responsive by histopathology but non-hormone responsive by MGC, had significantly inferior overall survival compared with patients who had concordant results. This extended to patients who received no adjuvant therapy (hazard ratio [HR], 3.19; 95% CI, 1.19 to 8.57), or endocrine therapy alone (HR, 2.64; 95% CI, 1.55 to 4.51). For cases identified as hormone responsive by histopathology and who received endocrine therapy alone, the MGC hormone-responsive classifier remained significant after multivariable adjustment (HR, 2.45; 95% CI, 1.39 to 4.34). CONCLUSION: Classification error rates for RNA-seq-based classifiers for the five key BC biomarkers generally were equivalent to conventional histopathology. However, RNA-seq classifiers provided added clinical value in particular for tumors determined by histopathology to be hormone responsive but by RNA-seq to be hormone insensitive.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...