Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 6: 8795, 2015 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-26514280

RESUMO

Secret communication over public channels is one of the central pillars of a modern information society. Using quantum key distribution this is achieved without relying on the hardness of mathematical problems, which might be compromised by improved algorithms or by future quantum computers. State-of-the-art quantum key distribution requires composable security against coherent attacks for a finite number of distributed quantum states as well as robustness against implementation side channels. Here we present an implementation of continuous-variable quantum key distribution satisfying these requirements. Our implementation is based on the distribution of continuous-variable Einstein-Podolsky-Rosen entangled light. It is one-sided device independent, which means the security of the generated key is independent of any memoryfree attacks on the remote detector. Since continuous-variable encoding is compatible with conventional optical communication technology, our work is a step towards practical implementations of quantum key distribution with state-of-the-art security based solely on telecom components.

2.
Phys Rev Lett ; 112(7): 073602, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24579597

RESUMO

Squeezed vacuum states constitute a particularly useful resource in quantum information as well as in quantum metrology. The frequency conversion of these states is important to provide the bridge between different wavelengths within a sequence of downstream applications and also to provide a way for squeezed-state generation at so-far inaccessible wavelengths. Here we demonstrate the external quantum up-conversion of carrier-light-free squeezed vacuum states for the first time. Our result proves that nondegenerate sum-frequency generation preserves the coherences that are present between photon pairs and higher-order photon pairs of the squeezed input state.

3.
Opt Express ; 21(9): 11546-53, 2013 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-23670011

RESUMO

Continuous variable entanglement is a fundamental resource for many quantum information tasks. Important protocols like superactivation of zero-capacity channels and finite-size quantum cryptography that provides security against most general attacks, require about 10 dB two-mode squeezing. Additionally, stable phase control mechanisms are necessary but are difficult to achieve because the total amount of optical loss to the entangled beams needs to be small. Here, we experimentally demonstrate a control scheme for two-mode squeezed vacuum states at the telecommunication wavelength of 1550 nm. Our states exhibited an Einstein-Podolsky-Rosen covariance product of 0.0309 ± 0.0002, where 1 is the critical value, and a Duan inseparability value of 0.360 ± 0.001, where 4 is the critical value. The latter corresponds to 10.45 ± 0.01 dB which reflects the average non-classical noise suppression of the two squeezed vacuum states used to generate the entanglement. With the results of this work demanding quantum information protocols will become feasible.


Assuntos
Luz , Modelos Teóricos , Espalhamento de Radiação , Telecomunicações , Simulação por Computador , Retroalimentação , Teoria Quântica , Vácuo
4.
Sensors (Basel) ; 13(1): 565-73, 2013 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-23291574

RESUMO

The efficient generation of second-harmonic light and squeezed light requires non-linear crystals that have low absorption at the fundamental and harmonic wavelengths. In this work the photo-thermal self-phase modulation technique is exploited to measure the absorption coefficient of periodically poled potassium titanyl phosphate (PPKTP) at 1,550 nm and 775 nm. The measurement results are (84±40) ppm/cm and (127±24) ppm/cm, respectively. We conclude that the performance of state-of-the-art frequency doubling and squeezed light generation in PPKTP is not limited by absorption.

5.
Phys Rev Lett ; 111(23): 230505, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24476242

RESUMO

Distribution of entanglement between macroscopically separated parties is crucial for future quantum information networks. Surprisingly, it has been theoretically shown that two distant systems can be entangled by sending a third system that is not entangled with either of them. Here, we experimentally distribute entanglement and successfully prove that our transmitted light beam is indeed not entangled with the parties' local systems. Our work demonstrates an unexpected variant of entanglement distribution and improves the understanding necessary to engineer multipartite quantum networks.

6.
Phys Rev Lett ; 104(25): 251102, 2010 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-20867358

RESUMO

Only a few years ago, it was realized that the zero-area Sagnac interferometer topology is able to perform quantum nondemolition measurements of position changes of a mechanical oscillator. Here, we experimentally show that such an interferometer can also be efficiently enhanced by squeezed light. We achieved a nonclassical sensitivity improvement of up to 8.2 dB, limited by optical loss inside our interferometer. Measurements performed directly on our squeezed-light laser output revealed squeezing of 12.7 dB. We show that the sensitivity of a squeezed-light enhanced Sagnac interferometer can surpass the standard quantum limit for a broad spectrum of signal frequencies without the need for filter cavities as required for Michelson interferometers. The Sagnac topology is therefore a powerful option for future gravitational-wave detectors, such as the Einstein Telescope, whose design is currently being studied.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...