Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anim Genet ; 53(3): 452-459, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35288946

RESUMO

We investigated the controversial origin of domestic sheep (Ovis aries) using large samples of contemporary and ancient domestic individuals and their closest wild relatives: the Asiatic mouflon (Ovis gmelini), the urial (Ovis vignei) and the argali (Ovis ammon). A phylogeny based on mitochondrial DNA, including 213 new cytochrome-b sequences of wild Ovism confirmed that O. gmelini is the maternal ancestor of sheep and precluded mtDNA contributions from O. vignei (and O. gmelini × O. vignei hybrids) to domestic lineages. We also produced 54 new control region sequences showing shared haplogroups (A, B, C and E) between domestic sheep and wild O. gmelini which localized the domestication center in eastern Anatolia and central Zagros, excluding regions further east where exclusively wild haplogroups were found. This overlaps with the geographic distribution of O. gmelini gmelini, further suggesting that the maternal origin of domestic sheep derives from this subspecies. Additionally, we produced 57 new CR sequences of Neolithic sheep remains from a large area covering Anatolia to Europe, showing the early presence of at least three mitochondrial haplogroups (A, B and D) in Western colonization routes. This confirmed that sheep domestication was a large-scale process that captured diverse maternal lineages (haplogroups).


Assuntos
DNA Mitocondrial , Carneiro Doméstico , Animais , Citocromos b/genética , DNA Mitocondrial/genética , Variação Genética , Haplótipos , Filogenia , Ovinos/genética , Carneiro Doméstico/genética , Turquia
2.
Biol Lett ; 14(10)2018 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-30333260

RESUMO

Near Eastern Neolithic farmers introduced several species of domestic plants and animals as they dispersed into Europe. Dogs were the only domestic species present in both Europe and the Near East prior to the Neolithic. Here, we assessed whether early Near Eastern dogs possessed a unique mitochondrial lineage that differentiated them from Mesolithic European populations. We then analysed mitochondrial DNA sequences from 99 ancient European and Near Eastern dogs spanning the Upper Palaeolithic to the Bronze Age to assess if incoming farmers brought Near Eastern dogs with them, or instead primarily adopted indigenous European dogs after they arrived. Our results show that European pre-Neolithic dogs all possessed the mitochondrial haplogroup C, and that the Neolithic and Post-Neolithic dogs associated with farmers from Southeastern Europe mainly possessed haplogroup D. Thus, the appearance of haplogroup D most probably resulted from the dissemination of dogs from the Near East into Europe. In Western and Northern Europe, the turnover is incomplete and haplogroup C persists well into the Chalcolithic at least. These results suggest that dogs were an integral component of the Neolithic farming package and a mitochondrial lineage associated with the Near East was introduced into Europe alongside pigs, cows, sheep and goats. It got diluted into the native dog population when reaching the Western and Northern margins of Europe.


Assuntos
Arqueologia , DNA Mitocondrial , Cães/genética , Agricultura , Animais , Cães/classificação , Europa (Continente) , Fósseis , Haplótipos , Humanos , Análise de Sequência de DNA
3.
R Soc Open Sci ; 3(11): 160449, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28018628

RESUMO

Extant dog and wolf DNA indicates that dog domestication was accompanied by the selection of a series of duplications on the Amy2B gene coding for pancreatic amylase. In this study, we used a palaeogenetic approach to investigate the timing and expansion of the Amy2B gene in the ancient dog populations of Western and Eastern Europe and Southwest Asia. Quantitative polymerase chain reaction was used to estimate the copy numbers of this gene for 13 ancient dog samples, dated to between 15 000 and 4000 years before present (cal. BP). This evidenced an increase of Amy2B copies in ancient dogs from as early as the 7th millennium cal. BP in Southeastern Europe. We found that the gene expansion was not fixed across all dogs within this early farming context, with ancient dogs bearing between 2 and 20 diploid copies of the gene. The results also suggested that selection for the increased Amy2B copy number started 7000 years cal. BP, at the latest. This expansion reflects a local adaptation that allowed dogs to thrive on a starch rich diet, especially within early farming societies, and suggests a biocultural coevolution of dog genes and human culture.

4.
Science ; 352(6290): 1228-31, 2016 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-27257259

RESUMO

The geographic and temporal origins of dogs remain controversial. We generated genetic sequences from 59 ancient dogs and a complete (28x) genome of a late Neolithic dog (dated to ~4800 calendar years before the present) from Ireland. Our analyses revealed a deep split separating modern East Asian and Western Eurasian dogs. Surprisingly, the date of this divergence (~14,000 to 6400 years ago) occurs commensurate with, or several millennia after, the first appearance of dogs in Europe and East Asia. Additional analyses of ancient and modern mitochondrial DNA revealed a sharp discontinuity in haplotype frequencies in Europe. Combined, these results suggest that dogs may have been domesticated independently in Eastern and Western Eurasia from distinct wolf populations. East Eurasian dogs were then possibly transported to Europe with people, where they partially replaced European Paleolithic dogs.


Assuntos
Animais Domésticos/genética , Cães/genética , Lobos/genética , Animais , Arqueologia , DNA Mitocondrial/genética , Cães/classificação , Europa (Continente) , Ásia Oriental , Genômica , Haplótipos , Migração Humana , Filogenia
5.
Mol Phylogenet Evol ; 94(Pt A): 346-57, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26424382

RESUMO

The European sturgeon (Acipenser sturio) was once a common species throughout Europe, but the sole remaining natural population presently inhabits the Gironde Estuary in France (Atlantic coast). The species was classified as 'Critically Endangered' in 1996, and the Gironde population is now on the verge of extinction. In this setting, and for the first time, we present the past phylogeographical features of this species throughout Europe along with an assessment of its former genetic diversity. This study was based on a molecular analysis (mtDNA CR sequencing) of 10 living specimens from the Gironde Estuary, 55 museum specimens that had been caught along 19th and 20th centuries, and 59 archaeological remains dating back to 260-5000years BP, from which mitochondrial DNA was extracted and amplified. Although discontinuous, the produced data provided a realistic image of the former structure of A. sturio in Europe. Reconstruction of the phylogenetic trees and haplotypes network led to the identification of several clades. The mitochondrial genetic diversity of this species was found to be much greater at the core (Iberian Peninsula, Mediterranean and Adriatic regions) than along the margins (Atlantic-Northern Europe, Black Sea) of its range. A series of hypotheses on the dates and causes of changes in the species' major structures are put forward on the basis of these data. Finally, competition with A. oxyrinchus, a sibling species whose presence in Northern Europe was recently reconsidered, is presented as a major factor in the evolution of this species.


Assuntos
Espécies em Perigo de Extinção , Peixes/classificação , Peixes/genética , Animais , Mar Negro , DNA Mitocondrial/análise , DNA Mitocondrial/genética , França , Variação Genética , Haplótipos , Filogenia , Filogeografia
6.
Artigo em Inglês | MEDLINE | ID: mdl-24617463

RESUMO

Great ancient composers have endured many obstacles and constraints which are very difficult to understand unless we perform the restoration process of ancient music. Species identification in leather used during manufacturing is the key step to start such a restoration process in order to produce a facsimile of a museum piano. Our study reveals the species identification in the leather covering the hammer head in a piano created by Erard in 1802. This is the last existing piano similar to the piano that Beethoven used with its leather preserved in its original state. The leather sample was not present in a homogeneous piece, yet combined with glue. Using a DNA extraction method that avoids PCR inhibitors; we discovered that sheep and cattle are the origin of the combination. To identify the species in the leather, we focused on the amounts of mitochondrial DNA in both leather and glue and results have led us to the conclusion that the leather used to cover the hammer head in this piano was made of cattle hide.


Assuntos
DNA Mitocondrial/genética , DNA Mitocondrial/história , Música/história , Animais , Bovinos/genética , DNA Mitocondrial/isolamento & purificação , História do Século XVII , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Ovinos/genética
7.
PLoS One ; 9(12): e114148, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25502338

RESUMO

The analysis of ancient or processed DNA samples is often a great challenge, because traditional Polymerase Chain Reaction - based amplification is impeded by DNA damage. Blocking lesions such as abasic sites are known to block the bypass of DNA polymerases, thus stopping primer elongation. In the present work, we applied the SERRS-hybridization assay, a fully non-enzymatic method, to the detection of DNA refractory to PCR amplification. This method combines specific hybridization with detection by Surface Enhanced Resonant Raman Scattering (SERRS). It allows the detection of a series of double-stranded DNA molecules containing a varying number of abasic sites on both strands, when PCR failed to detect the most degraded sequences. Our SERRS approach can quickly detect DNA molecules without any need for DNA repair. This assay could be applied as a pre-requisite analysis prior to enzymatic reparation or amplification. A whole new set of samples, both forensic and archaeological, could then deliver information that was not yet available due to a high degree of DNA damage.


Assuntos
DNA/genética , Reação em Cadeia da Polimerase , Análise Espectral Raman/métodos , Artefatos , Sequência de Bases , DNA/química , DNA/metabolismo , Dano ao DNA , DNA Polimerase Dirigida por DNA/metabolismo , Dados de Sequência Molecular , Hibridização de Ácido Nucleico
8.
PLoS One ; 8(10): e75110, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24098367

RESUMO

We have used a paleogenetics approach to investigate the genetic landscape of coat color variation in ancient Eurasian dog and wolf populations. We amplified DNA fragments of two genes controlling coat color, Mc1r (Melanocortin 1 Receptor) and CBD103 (canine-ß-defensin), in respectively 15 and 19 ancient canids (dogs and wolf morphotypes) from 14 different archeological sites, throughout Asia and Europe spanning from ca. 12 000 B.P. (end of Upper Palaeolithic) to ca. 4000 B.P. (Bronze Age). We provide evidence of a new variant (R301C) of the Melanocortin 1 receptor (Mc1r) and highlight the presence of the beta-defensin melanistic mutation (CDB103-K locus) on ancient DNA from dog-and wolf-morphotype specimens. We show that the dominant K(B) allele (CBD103), which causes melanism, and R301C (Mc1r), the variant that may cause light hair color, are present as early as the beginning of the Holocene, over 10,000 years ago. These results underline the genetic diversity of prehistoric dogs. This diversity may have partly stemmed not only from the wolf gene pool captured by domestication but also from mutations very likely linked to the relaxation of natural selection pressure occurring in-line with this process.


Assuntos
Cães/anatomia & histologia , Cães/genética , Cor de Cabelo/genética , Lobos/anatomia & histologia , Lobos/genética , Alelos , Animais , DNA Mitocondrial/genética , Dados de Sequência Molecular , Mutação
9.
Anal Bioanal Chem ; 404(2): 415-22, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22695500

RESUMO

We have developed a fully enzyme-free SERRS hybridization assay for specific detection of double-stranded DNA sequences. Although all DNA detection methods ranging from PCR to high-throughput sequencing rely on enzymes, this method is unique for being totally non-enzymatic. The efficiency of enzymatic processes is affected by alterations, modifications, and/or quality of DNA. For instance, a limitation of most DNA polymerases is their inability to process DNA damaged by blocking lesions. As a result, enzymatic amplification and sequencing of degraded DNA often fail. In this study we succeeded in detecting and quantifying, within a mixture, relative amounts of closely related double-stranded DNA sequences from Rupicapra rupicapra (chamois) and Capra hircus (goat). The non-enzymatic SERRS assay presented here is the corner stone of a promising approach to overcome the failure of DNA polymerase when DNA is too degraded or when the concentration of polymerase inhibitors is too high. It is the first time double-stranded DNA has been detected with a truly non-enzymatic SERRS-based method. This non-enzymatic, inexpensive, rapid assay is therefore a breakthrough in nucleic acid detection.


Assuntos
DNA/análise , Ácidos Nucleicos/análise , Reação em Cadeia da Polimerase/métodos
10.
PLoS One ; 7(1): e30272, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22299033

RESUMO

The goat (Capra hircus) is one of the earliest domesticated species ca. 10,500 years ago in the Middle-East where its wild ancestor, the bezoar (Capra aegagrus), still occurs. During the Neolithic dispersal, the domestic goat was then introduced in Europe, including the main Mediterranean islands. Islands are interesting models as they maintain traces of ancient colonization, historical exchanges or of peculiar systems of husbandry. Here, we compare the mitochondrial genetic diversity of both medieval and extant goats in the Island of Corsica that presents an original and ancient model of breeding with free-ranging animals. We amplified a fragment of the Control Region for 21 medieval and 28 current goats. Most of them belonged to the A haplogroup, the most worldwide spread and frequent today, but the C haplogroup is also detected at low frequency in the current population. Present Corsican goats appeared more similar to medieval goats than to other European goat populations. Moreover, 16 out of the 26 haplotypes observed were endemic to Corsica and the inferred demographic history suggests that the population has remained constant since the Middle Ages. Implications of these results on management and conservation of endangered Corsican goats currently decimated by a disease are addressed.


Assuntos
Criação de Animais Domésticos/história , Arqueologia , Evolução Molecular , Variação Genética , Cabras/genética , Mitocôndrias/genética , Agricultura , Animais , Animais Domésticos , Arqueologia/métodos , DNA Mitocondrial/genética , Feminino , França , Variação Genética/fisiologia , Cabras/fisiologia , História do Século XXI , História Antiga , Masculino , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA
11.
PLoS One ; 7(2): e31123, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22363563

RESUMO

BACKGROUND: The lava mouse, Malpaisomys insularis, was endemic to the Eastern Canary islands and became extinct at the beginning of the 14(th) century when the Europeans reached the archipelago. Studies to determine Malpaisomys' phylogenetic affinities, based on morphological characters, remained inconclusive because morphological changes experienced by this insular rodent make phylogenetic investigations a real challenge. Over 20 years since its first description, Malpaisomys' phylogenetic position remains enigmatic. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we resolved this issue using molecular characters. Mitochondrial and nuclear markers were successfully amplified from subfossils of three lava mouse samples. Molecular phylogenetic reconstructions revealed, without any ambiguity, unsuspected relationships between Malpaisomys and extant mice (genus Mus, Murinae). Moreover, through molecular dating we estimated the origin of the Malpaisomys/mouse clade at 6.9 Ma, corresponding to the maximal age at which the archipelago was colonised by the Malpaisomys ancestor via natural rafting. CONCLUSION/SIGNIFICANCE: This study reconsiders the derived morphological characters of Malpaisomys in light of this unexpected molecular finding. To reconcile molecular and morphological data, we propose to consider Malpaisomys insularis as an insular lineage of mouse.


Assuntos
Extinção Biológica , Camundongos/genética , Paleontologia , Filogenia , Roedores/genética , Animais , Artefatos , Evolução Biológica , DNA/genética , Fósseis , Geografia , Funções Verossimilhança , Dados de Sequência Molecular , Mutação/genética , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Espanha , Fatores de Tempo , Dente/anatomia & histologia
12.
PLoS One ; 6(5): e17847, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21655320

RESUMO

In this study, we have applied Surface Enhanced Resonance Raman Scattering (SERRS) technology to the specific detection of DNA. We present an innovative SERRS sandwich-hybridization assay that allows specific DNA detection without any enzymatic amplification, such as is the case with Polymerase Chain Reaction (PCR). In some substrates, such as ancient or processed remains, enzymatic amplification fails due to DNA alteration (degradation, chemical modification) or to the presence of inhibitors. Consequently, the development of a non-enzymatic method, allowing specific DNA detection, could avoid long, expensive and inconclusive amplification trials. Here, we report the proof of concept of a SERRS sandwich-hybridization assay that leads to the detection of a specific chamois DNA. This SERRS assay reveals its potential as a non-enzymatic alternative technology to DNA amplification methods (particularly the PCR method) with several applications for species detection. As the amount and type of damage highly depend on the preservation conditions, the present SERRS assay would enlarge the range of samples suitable for DNA analysis and ultimately would provide exciting new opportunities for the investigation of ancient DNA in the fields of evolutionary biology and molecular ecology, and of altered DNA in food frauds detection and forensics.


Assuntos
DNA/análise , Hibridização de Ácido Nucleico/métodos , Reação em Cadeia da Polimerase , Análise Espectral Raman
13.
Am J Phys Anthropol ; 144(2): 248-57, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20872803

RESUMO

Molecular anthropology has been widely used to infer the origin and processes of the colonization of Polynesia. However, there are still a lack of representative geographical studies of Eastern Polynesia and unchallenged genetic data about ancient Polynesian people. The absence of both of these elements prevents an accurate description of the demographic processes of internal dispersion within the Polynesian triangle. This study provides a twofold analysis of ancient and modern mtDNA in the eastern part of French Polynesia: the Gambier Islands. The paleogenetic analyses conducted on burials of the Temoe Atoll (14(th) -17(th) centuries) represent the first fully authenticated ancient human sequences from Polynesia. The identification of the "Melanesian" Q1 mtDNA lineage in ancient human remains substantiates the Near Oceanic contribution to the early gene pool of this region. Modern samples originate from Mangareva Island. Genealogical investigations enable us to reliably identify the conservation of the Melanesian component in Easternmost Polynesia, despite recent European colonization. Finally, the identification of rare mutations in sequences belonging to haplogroup B4a1a1a provides new perspectives to the debate on the internal peopling of the Polynesian region. Altogether, the results laid out in our study put the emphasis on the necessity of controlled sampling when discussing the internal settlement of Polynesia.


Assuntos
DNA Mitocondrial/genética , Fósseis , Havaiano Nativo ou Outro Ilhéu do Pacífico/genética , Antropologia/métodos , Emigração e Imigração , Marcadores Genéticos/genética , Variação Genética , Humanos , Melanesia , Polinésia , Análise de Sequência de DNA
14.
PLoS One ; 5(5): e10648, 2010 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-20498832

RESUMO

BACKGROUND: The high frequency (around 0.70 worldwide) and the relatively young age (between 14,000 and 62,000 years) of a derived group of haplotypes, haplogroup D, at the microcephalin (MCPH1) locus led to the proposal that haplogroup D originated in a human lineage that separated from modern humans >1 million years ago, evolved under strong positive selection, and passed into the human gene pool by an episode of admixture circa 37,000 years ago. The geographic distribution of haplogroup D, with marked differences between Africa and Eurasia, suggested that the archaic human form admixing with anatomically modern humans might have been Neanderthal. METHODOLOGY/PRINCIPAL FINDINGS: Here we report the first PCR amplification and high-throughput sequencing of nuclear DNA at the microcephalin (MCPH1) locus from Neanderthal individual from Mezzena Rockshelter (Monti Lessini, Italy). We show that a well-preserved Neanderthal fossil dated at approximately 50,000 years B.P., was homozygous for the ancestral, non-D, allele. The high yield of Neanderthal mtDNA sequences of the studied specimen, the pattern of nucleotide misincorporation among sequences consistent with post-mortem DNA damage and an accurate control of the MCPH1 alleles in all personnel that manipulated the sample, make it extremely unlikely that this result might reflect modern DNA contamination. CONCLUSIONS/SIGNIFICANCE: The MCPH1 genotype of the Monti Lessini (MLS) Neanderthal does not prove that there was no interbreeding between anatomically archaic and modern humans in Europe, but certainly shows that speculations on a possible Neanderthal origin of what is now the most common MCPH1 haplogroup are not supported by empirical evidence from ancient DNA.


Assuntos
Alelos , Fósseis , Proteínas do Tecido Nervoso/genética , Filogenia , Proteínas de Ciclo Celular , Proteínas do Citoesqueleto , DNA Mitocondrial/genética , Loci Gênicos/genética , Humanos , Análise de Sequência de DNA
15.
Proc Natl Acad Sci U S A ; 106(51): 21754-9, 2009 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-20007379

RESUMO

The rich fossil record of the family Equidae (Mammalia: Perissodactyla) over the past 55 MY has made it an icon for the patterns and processes of macroevolution. Despite this, many aspects of equid phylogenetic relationships and taxonomy remain unresolved. Recent genetic analyses of extinct equids have revealed unexpected evolutionary patterns and a need for major revisions at the generic, subgeneric, and species levels. To investigate this issue we examine 35 ancient equid specimens from four geographic regions (South America, Europe, Southwest Asia, and South Africa), of which 22 delivered 87-688 bp of reproducible aDNA mitochondrial sequence. Phylogenetic analyses support a major revision of the recent evolutionary history of equids and reveal two new species, a South American hippidion and a descendant of a basal lineage potentially related to Middle Pleistocene equids. Sequences from specimens assigned to the giant extinct Cape zebra, Equus capensis, formed a separate clade within the modern plain zebra species, a phenotypicically plastic group that also included the extinct quagga. In addition, we revise the currently recognized extinction times for two hemione-related equid groups. However, it is apparent that the current dataset cannot solve all of the taxonomic and phylogenetic questions relevant to the evolution of Equus. In light of these findings, we propose a rapid DNA barcoding approach to evaluate the taxonomic status of the many Late Pleistocene fossil Equidae species that have been described from purely morphological analyses.


Assuntos
Evolução Biológica , DNA/genética , Cavalos/genética , Animais , Fósseis , Cavalos/classificação , Dados de Sequência Molecular
16.
PLoS One ; 4(5): e5541, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19440242

RESUMO

BACKGROUND: New polymorphism datasets from heterochroneous data have arisen thanks to recent advances in experimental and microbial molecular evolution, and the sequencing of ancient DNA (aDNA). However, classical tools for population genetics analyses do not take into account heterochrony between subsets, despite potential bias on neutrality and population structure tests. Here, we characterize the extent of such possible biases using serial coalescent simulations. METHODOLOGY/PRINCIPAL FINDINGS: We first use a coalescent framework to generate datasets assuming no or different levels of heterochrony and contrast most classical population genetic statistics. We show that even weak levels of heterochrony ( approximately 10% of the average depth of a standard population tree) affect the distribution of polymorphism substantially, leading to overestimate the level of polymorphism theta, to star like trees, with an excess of rare mutations and a deficit of linkage disequilibrium, which are the hallmark of e.g. population expansion (possibly after a drastic bottleneck). Substantial departures of the tests are detected in the opposite direction for more heterochroneous and equilibrated datasets, with balanced trees mimicking in particular population contraction, balancing selection, and population differentiation. We therefore introduce simple corrections to classical estimators of polymorphism and of the genetic distance between populations, in order to remove heterochrony-driven bias. Finally, we show that these effects do occur on real aDNA datasets, taking advantage of the currently available sequence data for Cave Bears (Ursus spelaeus), for which large mtDNA haplotypes have been reported over a substantial time period (22-130 thousand years ago (KYA)). CONCLUSIONS/SIGNIFICANCE: Considering serial sampling changed the conclusion of several tests, indicating that neglecting heterochrony could provide significant support for false past history of populations and inappropriate conservation decisions. We therefore argue for systematically considering heterochroneous models when analyzing heterochroneous samples covering a large time scale.


Assuntos
Bases de Dados Genéticas , Genética Populacional/métodos , Algoritmos , Animais , Simulação por Computador , DNA Mitocondrial/genética , Evolução Molecular , Variação Genética , Filogenia , Polimorfismo Genético/genética , Ursidae/genética
17.
J Mol Evol ; 66(5): 533-8, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18398561

RESUMO

Hippidions are past members of the equid lineage which appeared in the South American fossil record around 2.5 Ma but then became extinct during the great late Pleistocene megafaunal extinction. According to fossil records and numerous dental, cranial, and postcranial characters, Hippidion and Equus lineages were expected to cluster in two distinct phylogenetic groups that diverged at least 10 MY, long before the emergence of the first Equus. However, the first DNA sequence information retrieved from Hippidion fossils supported a striking different phylogeny, with hippidions nesting inside a paraphyletic group of Equus. This result indicated either that the currently accepted phylogenetic tree of equids was incorrect regarding the timing of the evolutionary split between Hippidion and Equus or that the taxonomic identification of the hippidion fossils used for DNA analysis needed to be reexamined (and attributed to another extinct South American member of the equid lineage). The most likely candidate for the latter explanation is Equus (Amerhippus) neogeus. Here, we show by retrieving new ancient mtDNA sequences that hippidions and Equus (Amerhippus) neogeus were members of two distinct lineages. Furthermore, using a rigorous phylogenetic approach, we demonstrate that while formerly the largest equid from Southern America, Equus (Amerhippus) was just a member of the species Equus caballus. This new data increases the known phenotypic plasticity of horses and consequently casts doubt on the taxonomic validity of the subgenus Equus (Amerhippus).


Assuntos
DNA Mitocondrial/genética , Equidae/genética , Evolução Molecular , Animais , DNA Mitocondrial/química , Equidae/classificação , Fósseis , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA
18.
BMC Evol Biol ; 8: 121, 2008 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-18442367

RESUMO

BACKGROUND: Although today 15% of living primates are endemic to Madagascar, their diversity was even greater in the recent past since dozens of extinct species have been recovered from Holocene excavation sites. Among them were the so-called "giant lemurs" some of which weighed up to 160 kg. Although extensively studied, the phylogenetic relationships between extinct and extant lemurs are still difficult to decipher, mainly due to morphological specializations that reflect ecology more than phylogeny, resulting in rampant homoplasy. RESULTS: Ancient DNA recovered from subfossils recently supported a sister relationship between giant "sloth" lemurs and extant indriids and helped to revise the phylogenetic position of Megaladapis edwardsi among lemuriformes, but several taxa - such as the Archaeolemuridae - still await analysis. We therefore used ancient DNA technology to address the phylogenetic status of the two archaeolemurid genera (Archaeolemur and Hadropithecus). Despite poor DNA preservation conditions in subtropical environments, we managed to recover 94- to 539-bp sequences for two mitochondrial genes among 5 subfossil samples. CONCLUSION: This new sequence information provides evidence for the proximity of Archaeolemur and Hadropithecus to extant indriids, in agreement with earlier assessments of their taxonomic status (Primates, Indrioidea) and in contrast to recent suggestions of a closer relationship to the Lemuridae made on the basis of analyses of dental developmental and postcranial characters. These data provide new insights into the evolution of the locomotor apparatus among lemurids and indriids.


Assuntos
DNA/genética , Extinção Biológica , Fósseis , Lemur/genética , Strepsirhini/genética , Animais , Teorema de Bayes , Primers do DNA , Evolução Molecular , Especiação Genética , Lemur/classificação , Madagáscar , Modelos Genéticos , Método de Monte Carlo , Filogenia , Análise de Sequência de DNA , Strepsirhini/classificação
19.
Mol Ecol ; 17(8): 1962-70, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18363668

RESUMO

The genetic diversity of present-day brown bears (Ursus arctos) has been extensively studied over the years and appears to be geographically structured into five main clades. The question of the past diversity of the species has been recently addressed by ancient DNA studies that concluded to a relative genetic stability over the last 35,000 years. However, the post-last glacial maximum genetic diversity of the species still remains poorly documented, notably in the Old World. Here, we analyse Atlas brown bears, which became extinct during the Holocene period. A divergent brown bear mitochondrial DNA lineage not present in any of the previously studied modern or ancient bear samples was uncovered, suggesting that the diversity of U. arctos was larger in the past than it is now. Specifically, a significant portion (with respect to sequence divergence) of the intraspecific diversity of the brown bear was lost with the extinction of the Atlas brown bear after the Pleistocene/Holocene transition.


Assuntos
DNA Mitocondrial/química , Extinção Biológica , Fósseis , Variação Genética/genética , Ursidae/genética , África do Norte , Animais , Sequência de Bases , Citocromos b/química , Citocromos b/genética , DNA Mitocondrial/genética , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , Alinhamento de Sequência
20.
Proc Natl Acad Sci U S A ; 105(13): 5123-8, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-18347332

RESUMO

The endangered brown bear populations (Ursus arctos) in Iberia have been suggested to be the last fragments of the brown bear population that served as recolonization stock for large parts of Europe during the Pleistocene. Conservation efforts are intense, and results are closely monitored. However, the efforts are based on the assumption that the Iberian bears are a unique unit that has evolved locally for an extended period. We have sequenced mitochondrial DNA (mtDNA) from ancient Iberian bear remains and analyzed them as a serial dataset, monitoring changes in diversity and occurrence of European haplogroups over time. Using these data, we show that the Iberian bear population has experienced a dynamic, recent evolutionary history. Not only has the population undergone mitochondrial gene flow from other European brown bears, but the effective population size also has fluctuated substantially. We conclude that the Iberian bear population has been a fluid evolutionary unit, developed by gene flow from other populations and population bottlenecks, far from being in genetic equilibrium or isolated from other brown bear populations. Thus, the current situation is highly unusual and the population may in fact be isolated for the first time in its history.


Assuntos
Migração Animal/fisiologia , Filogenia , Ursidae/fisiologia , Animais , Cor , Dados de Sequência Molecular , Densidade Demográfica , Espanha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...