Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(13)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37447433

RESUMO

The search to deliver added value to industrialized biobased materials, such as cellulose derivatives, is a relevant aspect in the scientific, technological and innovation fields at present. To address these aspects, films of cellulose acetate (CA) and a perylene derivative (Pr) were fabricated using a solution-casting method with two different compositions. Consequently, these samples were exposed to dimethylformamide (DMF) solvent vapors so that its influence on the optical, wettability, and topographical properties of the films could be examined. The results demonstrated that solvent vapor could induce the apparent total or partial preferential orientation/migration of Pr toward the polymer-air interface. In addition, photocatalytic activities of the non-exposed and DMF vapor-exposed films against the degradation of methylene blue (MB) in an aqueous medium using light-emitting diode visible light irradiation were comparatively investigated. Apparently, the observed improvement in the performance of these materials in the MB photodegradation process is closely linked to the treatment with solvent vapor. Results from this study have allowed us to propose the fabrication and use of the improved photoactivity "all-organic" materials for potential applications in dye photodegradation in aqueous media.

2.
ACS Omega ; 4(1): 2111-2117, 2019 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-31459459

RESUMO

The gelation ability of 5-(1H-1,2,3-triazol-5-yl)isophthalic acid (click-TIA) in the presence of different metal acetates has been studied in different solvents and ligand/metal ratios. This manuscript is focused on the metallogel obtained from the combination of click-TIA and copper(II) acetate, which has been used as a model system in terms of characterization and gelation studies. Sonication treatment of the initial mixture of compounds and the nature of the counter anion were found to be critical factors for the supramolecular assembly of the metal/click-TIA complexes and, hence, for the formation of stable and homogeneous metallogels. The gel materials have been characterized with a variety of techniques including infrared, rheology, UV-vis spectroscopy, powder X-ray diffraction, and scanning electron microscopy.

3.
Soft Matter ; 15(2): 159-165, 2019 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-30548048

RESUMO

The linear response of alginate-phenyl boronic acid (Alg-PBA) esters shows a universal, composition-independent viscoelastic fluid-like behaviour. Reversible association of alginates governs their rheology at all compositions (viz. at all alginate concentrations and solution pH). However, their high strain behaviour is very sensitive to composition. Tuning composition affords liquids that neck to form filaments capable of being drawn to large elongations without failure. We interpret our data by invoking strain-dependent association and dissociation rates for the alginates. High association rates at high strain result in materials with viscoelastic liquid like behaviour.

4.
RSC Adv ; 9(14): 7601-7609, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-35521173

RESUMO

A series of biohydrogels based on mixtures of kappa-carrageenan (κ-carrageenan, κ-C) and gelatin were evaluated as potential soft delivery vehicles for the encapsulation and subsequent release of non-ionic surfactant vesicles (niosomes) loaded with resveratrol (RSV). The niosomes were prepared using a mixture of amphiphilic lipids Tween 80 and Span 80 in water. The results showed that RSV-niosomes did not significantly affect the hydrogelation properties of the biopolymer mixture. Moreover, in vitro drug release experiments from biohydrogels containing RSV-niosomes were successfully carried out under simulated gastrointestinal conditions. The RSV-niosomal liberation profiles from hydrogels were fitted using first order kinetics, Higuchi, Korsmeyer-Peppas and Weibull drug release models, showing the prevalence of diffusion mechanisms in each case. In addition, the RSV release was easily tuned by adjusting the total concentration of κ-C : gelatin. Interestingly, the niosomal-hydrogel system was also found to prevent the trans-to-cis photoisomerization of RSV.

5.
Beilstein J Org Chem ; 14: 2065-2073, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30202459

RESUMO

We describe the preparation and characterization of two new unsymmetrical squaramide-based organogelators. The synthesis of the compounds was carried out by subsequent amine condensations starting from dimethyl squarate. The design of the gelators involved a squaramide core connected on one side to a long aliphatic chain and on the other side to a glutamic acid residue. The gelator bearing the free carboxylic groups showed a lower gelation capacity than its precursor diester derivative. Some selected gels were further studied by infrared spectroscopy, rheology and electron microscopy. Critical gelation concentrations and gel-to-sol transition temperatures were also determined for each case. In addition, the superior squaramide diester gelator was compared with an analogue triazole-based gelator in terms of critical gelation concentration, gelation kinetics and thermal phase transition.

6.
Soft Matter ; 14(30): 6374-6385, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30028464

RESUMO

Three isomeric ionene polymers containing 1,4-diazabicyclo[2.2.2]octane (DABCO) and N,N'-(x-phenylene)dibenzamide (x = ortho-/meta-/para-) linkages have been used as dopant agents to produce n-doped poly(3,4-ethylenedioxythiophene) (PEDOT) electrodes by reducing already dedoped conducting polymer (CP) films. This work focuses on the influence of the ionene topology on both the properties of n-doped PEDOT:ionene electrodes and the success of the in situ thermal gelation of the ionene inside the CP matrix. The highest doping level is reached for the para-isomeric ionene-containing electrode, even though the content of ortho- and meta-topomers in the corresponding n-doped PEDOT:ionene electrodes is greater. Thus, many of the incorporated ionene units are not directly interacting with CP chains and, therefore, they do not play an active role as n-dopant agents but they are crucial for the in situ formation of the ionene hydrogels. The effect of the ionene topology is practically non-existent on properties such as the specific capacitance and wettability of PEDOT:ionene films, and it is small but non-negligible on the electrochemical and thermal stability. In contrast, the surface morphology, topography, and distribution of dopant molecules significantly depend on the ionene topology. In situ thermal gelation was successful in PEDOT films n-doped with the ortho- and para-topomers, even though this assembly process was much faster for the former than for the latter. The gelation considerably improved the mechanical response of the electropolymerized PEDOT film, which was practically non-existent before it. Molecular dynamics simulations prove that the strength and abundance of PEDOTionene specific interactions (i.e. π-π stacking, N-HS hydrogen bonds and both N+O and N+S interactions) are higher for the meta-isomeric ionene, for which the in situ gelation was not achieved, than for the ortho- and para-ones.

7.
J Org Chem ; 83(15): 7928-7938, 2018 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-29808679

RESUMO

In this work, we demonstrate that useful C-C bond-forming photoredox catalysis can be performed in air using easily prepared gel networks as reaction media to give similar results as are obtained under inert atmosphere conditions. These reactions are completely inhibited in homogeneous solution in air. However, the supramolecular fibrillar gel networks confine the reactants and block oxygen diffusion, allowing air-sensitive catalytic activity under ambient conditions. We investigate the mechanism of this remarkable protection, focusing on the boundary effect in the self-assembled supramolecular gels that enhances the rates of productive reactions over diffusion-controlled quenching of excited states. Our observations suggest the occurrence of triplet-sensitized chemical reactions in the gel networks within the compartmentalized solvent pools held between the nanofibers. The combination of enhanced viscosity and added interfaces in supramolecular gel media seems to be a key factor in facilitating the reactions under aerobic conditions.

8.
Phys Chem Chem Phys ; 20(15): 9855-9864, 2018 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-29611560

RESUMO

We report the reduction of poly(3,4-ethylenedioxythiophene) (PEDOT) films with a cationic 1,4-diazabicyclo[2.2.2]octane-based ionene bearing N,N'-(meta-phenylene)dibenzamide linkages (mPI). Our main goal is to obtain n-doped PEDOT using a polymeric dopant agent rather than small conventional tetramethylammonium (TMA), as is usual. This has been achieved using a three-step process, which has been individually optimized: (1) preparation of p-doped (oxidized) PEDOT at a constant potential of +1.40 V in acetonitrile with LiClO4 as the electrolyte; (2) dedoping of oxidized PEDOT using a fixed potential of -1.30 V in water; and (3) redoping of dedoped PEDOT applying a reduction potential of -1.10 V in water with mPI. The resulting films display the globular appearance typically observed for PEDOT, with mPI being structured in separated phases forming nanospheres or ultrathin sheets. This organization, which has been supported by atomistic molecular dynamics simulations, resembles the nanosegregated phase distribution observed for PEDOT p-doped with poly(styrenesulfonate). Furthermore, the doping level achieved using mPI as the doping agent is comparable to that achieved using TMA, even though ionene provides distinctive properties to the conducting polymer. For example, films redoped with mPI exhibit much more hydrophilicity than the oxidized ones, whereas films redoped with TMA are hydrophobic. Similarly, films redoped with mPI exhibit the highest thermal stability, while those redoped with TMA show thermal stability that is intermediate between those of the latter and the dedoped PEDOT. Overall, the incorporation of an mPI polycation as the n-dopant into PEDOT has important advantages for modulating the properties of this emblematic conducting polymer.

9.
Mol Pharm ; 15(8): 2963-2972, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-29446950

RESUMO

In this work, we demonstrated that the simple substitution of the 1,2,4-triazole moiety in 5-( 4H-1,2,4-triazol-4-yl)isophthalic acid (5-TIA) by the 1 H-1,2,3-triazol-5-yl unit enables the preparation of a hydrogelator (click-TIA). In sharp contrast to 5-TIA, its isostere click-TIA undergoes self-assembly in water upon sonication, leading to the formation of stable supramolecular viscoelastic hydrogels with a critical gelation concentration of 6 g/L. Hydrogels made of click-TIA as well as hybrid hydrogels made of the mixture click-TIA + 5-TIA (molar ratio 1:0.2) were used to compare different properties of the materials (i.e., rheological properties, thermal properties, mechanical stability, morphology). In terms of toxicity, neither click-TIA nor 5-TIA showed cytotoxic effects on cellular viability of HeLa cells up to 2.3 × 10-3 g/L when compared to untreated cells incubated with DMSO. Furthermore, the hydrogels were used for the encapsulation and in vitro controlled release of oxytetracycline that followed first-order kinetics. For the hydrogel made of click-TIA, a maximum drug release of ∼60% was reached after ∼8 h within a pH range between 6.5 and 10. However, the release rate was reduced to approximately half of its value at pH values between 1.2 and 5.0, whereas the use of hybrid hydrogels made of click-TIA + 5-TIA allowed to reduce the original rate at pH ≤ 6.5.


Assuntos
Portadores de Fármacos/química , Hidrogéis/química , Oxitetraciclina/administração & dosagem , Sobrevivência Celular/efeitos dos fármacos , Química Farmacêutica , Química Click , Preparações de Ação Retardada/administração & dosagem , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Oxitetraciclina/farmacocinética , Ácidos Ftálicos/química , Testes de Toxicidade/métodos , Triazóis/química
10.
Biomater Sci ; 6(1): 38-59, 2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-29164186

RESUMO

Phenylalanine (Phe) is an essential amino acid classified as neutral and nonpolar due to the hydrophobic nature of the benzyl side chain. In the field of materials science, the chemical modification of phenylalanine at C or N terminus has enabled to synthesize a large number of low-molecular-weight gelators over the past decade. Thus, many physical (or supramolecular) softgel materials have been fabricated by self-assembly of Phe-derived building blocks, which can be programmed with atomic level information and modification. The process of self-assembly and gelation must balance the parameters that influence the solubility as well as the contrasting forces that dictate epitaxial growth into entangled fibrillar aggregates. Gelator-gelator and solvent-gelator interactions are known to be highly important for the gelation process, and the non-covalent nature of these interactions provides physical gels with important properties such as reversible phase transitions and responsiveness towards external stimuli. Among other applications, these gels have been used for drug delivery, as extracellular matrix for tissue engineering, for oil spills recovery, removal of dyes, extraction of heavy metals or pollutants, and for the detection of explosives. In this tutorial review, we highlight the advances in the design, synthesis and applications of supramolecular gels made of Phe and derivatives.


Assuntos
Fenilalanina/química , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Peso Molecular , Solventes/química , Engenharia Tecidual
11.
Biomacromolecules ; 18(9): 2967-2979, 2017 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-28792743

RESUMO

This manuscript describes a new route to prepare rapidly Ca2+-free hydrogels from unmodified sodium alginate by simply mixing with small organic molecules such as poly(carboxylic acid) compounds as cross-linker agents instead of classical divalent metal salts such as CaCl2. Dimethyl sulfoxide (DMSO) was also found to induce the rapid gelation of aqueous alginate solutions. The gelation process takes place at room temperature, and depending on the composition, gels with good thermal (90-100 °C) and mechanical properties compared to classical metal-containing analogs are obtained. DMSO-based gels showed remarkable self-supporting and thixotropic properties, which can be tuned by the biopolymer concentration. Furthermore, oxalic acid-based gels show superior elasticity than HCl, CaCl2 and DMSO-based gels. The possibility to prepare monoliths, beads, and films of these gels provide them with significant versatility. In particular, films made of alginate and oxalic acid show good potential as synergistic anticancer drug delivery carrier. Computational studies using both quantum mechanical and classical force-field methodologies reveal that hydrogen bonding networks between water and DMSO molecules located close to the alginate chains are responsible for the stability of DMSO-based gels. In contrast, the cohesion of oxalic acid-based gels is a consequence of the coexistence of multiple ionic associations involving oxalate, alginate, and Na+ counterions, which stabilize the system and keep all the interacting species grouped.


Assuntos
Alginatos/química , Ácidos Hexurônicos/química , Hidrogéis/síntese química , Cálcio/química , Dimetil Sulfóxido/química , Elasticidade , Ácido Glucurônico/química , Hidrogéis/química , Ácido Oxálico/química
12.
Chem Commun (Camb) ; 53(23): 3350-3353, 2017 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-28261723

RESUMO

One-step functionalization of alginate with boronic acid groups allowed spontaneous formation of biocompatible hydrogels under basic conditions without additional complementary molecules or crosslinking agents. The dynamic nature of boronate ester bonds formed with vicinal diols present on alginate pyranose rings provided remarkable self-healing, injectable and multi-stimuli responsive properties to the material.


Assuntos
Alginatos/química , Ácidos Borônicos/química , Alginatos/síntese química , Alginatos/toxicidade , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/toxicidade , Ácidos Borônicos/síntese química , Ácidos Borônicos/toxicidade , Frutose/química , Células HeLa , Humanos , Hidrogéis , Reologia
13.
Chempluschem ; 82(2): 225-232, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31961537

RESUMO

Reported is a modular approach for the incorporation and stabilization of gold nanoparticles inside a three-dimensional macroporous hydrogel made of ferritin. The strategy, which involves the dynamic templating of surfactant H1 domains, demineralization, and remineralization helps to overcome aggregation and degradation issues usually associated with bare-metal-based nanocatalysts. The catalytic activity of the so-synthesized bionanocomposite hydrogel was demonstrated in both nitroaldol (Henry) and nitroreduction model reactions in aqueous solution at room temperature. An interesting synergistic effect between basic residues of the protein and the gold nanoparticles was found in the nitroaldol reaction when carried out in water in the presence of a phase-transfer catalyst. Furthermore, the reduction of 4-nitrophenol and 4-nitroaniline catalyzed by the nanocomposite scaffold in the presence of NaBH4 proceeded significantly faster than that using other known Au- and Ag-based catalysts under similar conditions.

14.
ACS Appl Mater Interfaces ; 8(45): 30908-30919, 2016 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-27775314

RESUMO

The aggregation mode of three azo dyes, methyl orange (MO), ponceau SS (PSS), and direct blue 1 (DB1) induced by three 1,4-diazabicyclo[2.2.2]octane (DABCO)-based ionene polymers having different topologies (i.e., 1,2-ionene, 1,3-ionene, and 1,4-ionene) was investigated in this work. Metachromatic behavior of the dyes in the presence of ionenes, and the stability of the ionene/dye complex were discussed as a function of ionene structure. It was demonstrated that the association of the dye molecules with the ionenes and the metachromasy were strongly influenced by both the dye structure and the ionene topology. Thus, MO, having one -SO3Na group per molecule, was almost stoichiometrically bound to all ionenes regardless of their topology, showing also a metachromatic effect. In sharp contrast, the interaction of PSS and DB1 molecules with ionenes was strongly dependent on the polymer topology. It was found that PSS having two -SO3Na groups per molecule was preferentially bound onto both 1,2-ionene and 1,3-ionene, but DB1, having four -SO3Na groups per molecule and a more complex structure, was efficiently bound only onto 1,2-ionene. The dye removal efficiency with each ionene was evaluated in batch mode taking into account the affinity of ionenes for azo dyes. The experimental isotherms of the dye sorption were fitted with four isotherm models, i.e., Langmuir, Freundlich, Sips, and Dubinin-Radushkevich. It was found that the best fitting of the experimental data was given by the Langmuir, Sips, and Dubinin-Radushkevich isotherm models. The maximum equilibrium sorption capacity, qm, evaluated by the Langmuir model, at 35 °C, was as follows: 985.71 mg MO/g 1,3-ionene, 483.71 mg PSS/g 1,3-ionene, 1010.49 mg PSS/g 1,2-ionene, and 976.7 mg DB1/g 1,2-ionene. Kinetic study of the dye removal indicated chemisorption as the main mechanism of sorption.

15.
Chem Commun (Camb) ; 52(89): 13068-13081, 2016 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-27711325

RESUMO

In this feature article, we discuss a series of contributions dealing with the in situ fabrication of supramolecular metallogels (i.e. using low molecular weight ligands and metal ions) that show self-healing properties of the bulk gel phase after complete physical segregation. Most of the advances in this area have taken place during the last three years and are mainly represented by organogels, whereas examples of hydrogels and organic-aqueous gels are still a minority. In situ gelation via metal-coordination of low molecular weight compounds is conceptually different from the use of premade (e.g. in solution) coordination polymers and polymeric structures as gelators and ligands, respectively. In the case of in situ gelation, the cooperative effects of all components of the mixture (i.e. ligand, metal ion, counterions and solvent molecules) in an appropriate ratio under well-defined experimental conditions play a crucial role in the gelation phenomenon and self-healing properties of the material.

16.
Molecules ; 21(9)2016 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-27571051

RESUMO

Here we describe a preliminary investigation on the ability of natural keratin to catalyze the nitroaldol (Henry) reaction between aldehydes and nitroalkanes. Both aromatic and heteroaromatic aldehydes bearing strong or moderate electron-withdrawing groups were converted into the corresponding ß-nitroalcohol products in both DMSO and in water in the presence of tetrabutylammonium bromide (TBAB) as a phase transfer catalyst. Negligible background reactions (i.e., negative control experiment in the absence of keratin protein) were observed in these solvent systems. Aromatic aldehydes bearing electron-donating groups and aliphatic aldehydes showed poor or no conversion, respectively. In general, the reactions in water/TBAB required twice the amount of time than in DMSO to achieve similar conversions. Moreover, comparison of the kinetics of the keratin-mediated nitroaldol (Henry) reaction with other biopolymers revealed slower rates for the former and the possibility of fine-tuning the kinetics by appropriate selection of the biopolymer and solvent.


Assuntos
Compostos Heterocíclicos com 3 Anéis/química , Queratinas/química , Nitrocompostos/química , Compostos de Amônio Quaternário/química , Catálise
17.
Chem Commun (Camb) ; 51(94): 16848-51, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26438215

RESUMO

The first proof of concept for the application of intragel green-to-blue photon upconversion to a chemical reaction is reported. The developed method allows the photoreduction of aryl halides at room temperature under aerobic conditions.

18.
Molecules ; 20(3): 4136-47, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25749682

RESUMO

In this manuscript we report a critical evaluation of the ability of natural DNA to mediate the nitroaldol (Henry) reaction at physiological temperature in pure water. Under these conditions, no background reaction took place (i.e., control experiment without DNA). Both heteroaromatic aldehydes (e.g., 2-pyridinecarboxaldehyde) and aromatic aldehydes bearing strong or moderate electron-withdrawing groups reacted satisfactorily with nitromethane obeying first order kinetics and affording the corresponding ß-nitroalcohols in good yields within 24 h. In contrast, aliphatic aldehydes and aromatic aldehydes having electron-donating groups either did not react or were poorly converted. Moreover, we discovered that a number of metal-free organic buffers efficiently promote the Henry reaction when they were used as reaction media without adding external catalysts. This constitutes an important observation because the influence of organic buffers in chemical processes has been traditionally underestimated.


Assuntos
Aldeídos/química , DNA/química , Elétrons , Compostos Heterocíclicos com 3 Anéis/química , Metano/análogos & derivados , Nitrocompostos/química , Nitroparafinas/química , Água/química , Soluções Tampão , Catálise , Metano/química
19.
Gels ; 1(2): 135-161, 2015 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-30674170

RESUMO

Hyperthermia therapy is a medical treatment based on the exposition of body tissue to slightly higher temperatures than physiological (i.e., between 41 and 46 °C) to damage and kill cancer cells or to make them more susceptible to the effects of radiation and anti-cancer drugs. Among several methods suitable for heating tumor areas, magnetic hyperthermia involves the introduction of magnetic micro/nanoparticles into the tumor tissue, followed by the application of an external magnetic field at fixed frequency and amplitude. A very interesting approach for magnetic hyperthermia is the use of biocompatible thermo-responsive magnetic gels made by the incorporation of the magnetic particles into cross-linked polymer gels. Mainly because of the hysteresis loss from the magnetic particles subjected to a magnetic field, the temperature of the system goes up and, once the temperature crosses the lower critical solution temperature, thermo-responsive gels undergo large volume changes and may deliver anti-cancer drug molecules that have been previously entrapped in their networks. This tutorial review describes the main properties and formulations of magnetic gel composites conceived for magnetic hyperthermia therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...