Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(31): 44272-44288, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38941052

RESUMO

One of the hottest research topics over the last decades was the valorization or/and recycling of agro-industrial wastes into different valuable liquid or solid products, which is considered a sustainable and low-cost approach. In this study, we developed zero-valent iron nanoparticles from Palm Petiole Extract (P-NZVI) using a green and straightforward approach. The as-synthesized P-NZVI was used to adsorb Cr(VI) in water. The physico-chemical characterizations of P-NZVI, including the particle size, crystalline structure, surface area, morphology, and functional groups, were investigated via several techniques such as UV-vis spectroscopy, SEM, TEM, XRD, FTIR, AFM, DLS, pHZPC measurement, and BET analysis. The adsorption performance of P-NZVI was studied under different operational parameters, including pollutant concentration, pH, temperature, and adsorbent mass. The adsorption rate was found to be 89.3% within 40 min, corresponding to the adsorption capacity of 44.47 mg/g under the following conditions: initial Cr(VI) concentration of 40 mg/L, pH 5, and a P-NZVI dosage of 1 g/L. It was found that the adsorption pattern follows the Langmuir and the pseudo-second-order kinetic models, indicating a combination of monolayer adsorption and chemisorption mechanisms. The thermodynamic study shows that the adsorption process is endothermic and spontaneous. The reusability of P-NZVI was carried out four times, showing a slight decrease from 89.3 to 87%. These findings highlight that P-NZVI's could be an effective green adsorbent for removing Cr(VI) or other types of toxic pollutants from water.


Assuntos
Cromo , Ferro , Nanopartículas Metálicas , Poluentes Químicos da Água , Poluentes Químicos da Água/química , Ferro/química , Adsorção , Cromo/química , Nanopartículas Metálicas/química , Purificação da Água/métodos , Arecaceae/química , Cinética , Química Verde , Extratos Vegetais/química
2.
ACS Omega ; 8(38): 34364-34376, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37780026

RESUMO

In this study, the removal of Crocein Orange G dye (COG) from aqueous solution was investigated using an innovative green catalyst to overcome problems with chemical techniques. Clay bentonite El Hamma (HB)-supported nanoscale zero-valent iron (NZVI) was used as a heterogeneous Fenton-like catalyst for the oxidation of harmful COG. Palm waste extract was herein used as a reducing and capping agent to synthesize NZVI, and HB clay was employed, which was obtained from the El Hamma bentonite deposit in the Gabes province of Tunisia. HB and HB-NZVI were characterized by various techniques such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer, Emmett, and Teller (BET), Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), X-ray diffraction (XRD), and zeta potential. Under optimal conditions, total degradation of COG was attained within 180 min. Kinetic studies showed that the dye degradation rate followed well the pseudo-second-order model. The apparent activation energy was 33.11 kJ/mol, which is typical of a physically controlled reaction. The degradation pathways and mineralization study revealed that the adsorption-Fenton-like reaction was the principal mechanism that demonstrated 100% degradation efficiency of COG even after three successive runs. Obtained results suggest that HB-NZVI is an affective heterogeneous catalyst for the degradation of COG by H2O2 and may constitute a sustainable green catalyst for azoic dye removal from industrial wastewaters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA