Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Gen Virol ; 102(7)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34269676

RESUMO

Type I interferons (IFNs) are a first line of defence against viral infections. Upon infection, a first small wave of early type I IFN, mainly IFN-ß and particularly IFN-α4, are induced and bind to the type I IFN receptor (IFNAR) to amplify the IFN response. It was shown for several viruses that robust type I IFN responses require this positive feedback loop via the IFNAR. Recently, we showed that infection of IFNAR knockout mice with the orthomyxovirus Thogoto virus lacking the ML open reading frame (THOV(ML-)) results in the expression of unexpected high amounts of type I IFN. To investigate if IFNAR-independent IFN responses are unique for THOV(ML-), we performed infection experiments with several negative-strand RNA viruses using different routes and dosages for infection. A variety of these viruses induced type I IFN responses IFNAR-independently when using the intraperitoneal (i.p.) route for infection. In vitro studies demonstrated that myeloid dendritic cells (mDC) are capable of producing IFNAR-independent IFN-α responses that are dependent on the expression of the adaptor protein mitochondrial antiviral-signalling protein (MAVS) whereas pDC where entirely depending on the IFNAR feedback loop in vitro. Thus, depending on dose and route of infection, the IFNAR feedback loop is not strictly necessary for robust type I IFN expression and an IFNAR-independent type I IFN production might be the rule rather than the exception for infections with numerous negative-strand RNA viruses.


Assuntos
Interferon-alfa/biossíntese , Vírus de RNA de Sentido Negativo/imunologia , Infecções por Vírus de RNA/imunologia , Receptor de Interferon alfa e beta/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Células Dendríticas/imunologia , Células Dendríticas/virologia , Camundongos , Camundongos Endogâmicos C57BL , Células Mieloides/imunologia , Células Mieloides/virologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Infecções por Vírus de RNA/virologia , Receptor de Interferon alfa e beta/genética , Thogotovirus , Carga Viral
2.
J Virol ; 89(7): 3859-69, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25609809

RESUMO

UNLABELLED: The Middle East respiratory syndrome coronavirus (MERS-CoV) emerged in 2012 as the causative agent of a severe respiratory disease with a fatality rate of approximately 30%. The high virulence and mortality rate prompted us to analyze aspects of MERS-CoV pathogenesis, especially its interaction with innate immune cells such as antigen-presenting cells (APCs). Particularly, we analyzed secretion of type I and type III interferons (IFNs) by APCs, i.e., B cells, macrophages, monocyte-derived/myeloid dendritic cells (MDDCs/mDCs), and by plasmacytoid dendritic cells (pDCs) of human and murine origin after inoculation with MERS-CoV. Production of large amounts of type I and III IFNs was induced exclusively in human pDCs, which were significantly higher than IFN induction by severe acute respiratory syndrome (SARS)-CoV. Of note, IFNs were secreted in the absence of productive replication. However, receptor binding, endosomal uptake, and probably signaling via Toll-like receptor 7 (TLR7) were critical for sensing of MERS-CoV by pDCs. Furthermore, active transcription of MERS-CoV N RNA and subsequent N protein expression were evident in infected pDCs, indicating abortive infection. Taken together, our results point toward dipeptidyl peptidase 4 (DPP4)-dependent endosomal uptake and subsequent infection of human pDCs by MERS-CoV. However, the replication cycle is stopped after early gene expression. In parallel, human pDCs are potent IFN-producing cells upon MERS-CoV infection. Knowledge of such IFN responses supports our understanding of MERS-CoV pathogenesis and is critical for the choice of treatment options. IMPORTANCE: MERS-CoV causes a severe respiratory disease with high fatality rates in human patients. Recently, confirmed human cases have increased dramatically in both number and geographic distribution. Understanding the pathogenesis of this highly pathogenic CoV is crucial for developing successful treatment strategies. This study elucidates the interaction of MERS-CoV with APCs and pDCs, particularly the induction of type I and III IFN secretion. Human pDCs are the immune cell population sensing MERS-CoV but secrete significantly larger amounts of IFNs, especially IFN-α, than in response to SARS-CoV. A model for molecular virus-host interactions is presented outlining IFN induction in pDCs. The massive IFN secretion upon contact suggests a critical role of this mechanism for the high degree of immune activation observed during MERS-CoV infection.


Assuntos
Células Dendríticas/imunologia , Células Dendríticas/virologia , Interferons/metabolismo , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Animais , Dipeptidil Peptidase 4/metabolismo , Endocitose , Endossomos/metabolismo , Endossomos/virologia , Humanos , Camundongos Endogâmicos C57BL , Internalização do Vírus
3.
Immunity ; 40(6): 949-60, 2014 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-24909887

RESUMO

Despite development of new antiviral drugs, viral infections are still a major health problem. The most potent antiviral defense mechanism is the innate production of type I interferon (IFN-I), which not only limits virus replication but also promotes antiviral T cell immunity through mechanisms, which remain insufficiently studied. Using the murine lymphocytic choriomeningitis virus model system, we show here that IFN-I signaling on T cells prevented their rapid elimination in vivo. Microarray analyses uncovered that IFN-I triggered the expression of selected inhibitory NK-cell-receptor ligands. Consequently, T cell immunity of IFN-I receptor (IFNAR)-deficient T cells could be restored by NK cell depletion or in NK-cell-deficient hosts (Nfil3(-/-)). The elimination of Ifnar1(-/-) T cells was dependent on NK-cell-mediated perforin expression. In summary, we identified IFN-I as a key player regulating the protection of T cells against regulatory NK cell function.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Citotoxicidade Imunológica , Interferon Tipo I/imunologia , Células Matadoras Naturais/imunologia , Coriomeningite Linfocítica/imunologia , Receptor de Interferon alfa e beta/imunologia , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Células Cultivadas , Imunidade Inata , Coriomeningite Linfocítica/virologia , Vírus da Coriomeningite Linfocítica/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Perforina/biossíntese , Receptor de Interferon alfa e beta/genética , Transdução de Sinais/imunologia , Replicação Viral/imunologia
4.
Proc Natl Acad Sci U S A ; 110(37): 15019-24, 2013 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-23980171

RESUMO

Robust cytotoxic CD8(+) T-cell response is important for immunity to intracellular pathogens. Here, we show that the transcription factor IFN Regulatory Factor 4 (IRF4) is crucial for the protective CD8(+) T-cell response to the intracellular bacterium Listeria monocytogenes. IRF4-deficient (Irf4(-/-)) mice could not clear L. monocytogenes infection and generated decreased numbers of L. monocytogenes-specific CD8(+) T cells with impaired effector phenotype and function. Transfer of wild-type CD8(+) T cells into Irf4(-/-) mice improved bacterial clearance, suggesting an intrinsic defect of CD8(+) T cells in Irf4(-/-) mice. Following transfer into wild-type recipients, Irf4(-/-) CD8(+) T cells became activated and showed initial proliferation upon L. monocytogenes infection. However, these cells could not sustain proliferation, produced reduced amounts of IFN-γ and TNF-α, and failed to acquire cytotoxic function. Forced IRF4 expression in Irf4(-/-) CD8(+) T cells rescued the defect. During acute infection, Irf4(-/-) CD8(+) T cells demonstrated diminished expression of B lymphocyte-induced maturation protein-1 (Blimp-1), inhibitor of DNA binding (Id)2, and T-box expressed in T cells (T-bet), transcription factors programming effector-cell generation. IRF4 was essential for expression of Blimp-1, suggesting that altered regulation of Blimp-1 contributes to the defects of Irf4(-/-) CD8(+) T cells. Despite increased levels of B-cell lymphoma 6 (BCL-6), Eomesodermin, and Id3, Irf4(-/-) CD8(+) T cells showed impaired memory-cell formation, indicating additional functions for IRF4 in this process. As IRF4 governs B-cell and CD4(+) T-cell differentiation, the identification of its decisive role in peripheral CD8(+) T-cell differentiation, suggests a common regulatory function for IRF4 in adaptive lymphocytes fate decision.


Assuntos
Fatores Reguladores de Interferon/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Diferenciação Celular , Proliferação de Células , Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Fatores Reguladores de Interferon/deficiência , Fatores Reguladores de Interferon/genética , Listeria monocytogenes/imunologia , Listeriose/genética , Listeriose/imunologia , Listeriose/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 1 de Ligação ao Domínio I Regulador Positivo , Linfócitos T Citotóxicos/metabolismo , Linfócitos T Citotóxicos/patologia , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...