Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(19): 5824-5830, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38712765

RESUMO

Boroxine- and borazine-cage analogs to C20, C60, and C70 were calculated and compared in terms of structure, strain indicators, and physical properties relevant to nanoscale applications. The results show C60 and C70 type cages are less strained than the smaller congener, primarily due to minimized bending in the B-arylene-B segments. The smallest cage calculated has a diameter of 2.4 nm, which increases up to 4.9 nm by either variation of the polyhedron (C20 < C60 < C70-type cage) or organic spacer elongation between boron centers. All calculated cages are porous (apertures ranging from 0.6 to 1.9 nm). Molecular electrostatic potential and Hirshfeld population analysis revealed both nucleophilic and electrophilic sites in the interior and exterior cage surfaces. HOMO-LUMO gaps range from 3.98 to 4.89 eV and 5.10-5.18 eV for the boroxine- and borazine-cages, respectively. Our findings provide insights into the design and properties of highly porous boroxine and borazine cages for nanoscience.

2.
ACS Omega ; 7(19): 16380-16390, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35601331

RESUMO

A series of bis-N-substituted tetrandrine derivatives carrying different aromatic substituents attached to both nitrogen atoms of the natural alkaloid were studied with double-stranded model DNAs (dsDNAs) to examine the binding properties and mechanism. Variable-temperature molecular recognition studies using UV-vis and fluorescence techniques revealed the thermodynamic parameters, ΔH, ΔS, and ΔG, showing that the tetrandrine derivatives exhibit high affinity toward dsDNA (K ≈ 105-107 M-1), particularly the bis(methyl)anthraquinone (BAqT) and bis(ethyl)indole compounds (BInT). Viscometry experiments, ethidium displacement assays, and molecular modeling studies enabled elucidation of the possible binding mode, indicating that the compounds exhibit a synergic interaction mode involving intercalation of one of the N-aryl substituents and interaction of the molecular skeleton in the major groove of the dsDNA. Cytotoxicity tests of the derivatives with tumor and nontumor cell lines demonstrated low cytotoxicity of these compounds, with the exception of the bis(methyl)pyrene (BPyrT) derivative, which is significantly more cytotoxic than the remaining derivatives, with IC50 values against the LS-180, A-549, and ARPE-19 cell lines that are similar to natural tetrandrine. Finally, complementary electrochemical characterization studies unveiled good electrochemical stability of the compounds.

3.
Chemistry ; 28(25): e202104604, 2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35274391

RESUMO

Cocrystallizations of diboronic acids [1,3-benzenediboronic acid (1,3-bdba), 1,4-benzenediboronic acid (1,4-bdba) and 4,4'-biphenyldiboronic acid (4,4'-bphdba)] and bipyridines [1,2-bis(4-pyridyl)ethylene (bpe) and 1,2-bis(4-pyridyl)ethane (bpeta)] generated the hydrogen-bonded 1 : 2 cocrystals [(1,4-bdba)(bpe)2 ] (1), [(1,4-bdba)(bpeta)2 ] (2), [(1,3-bdba)(bpe)2 (H2 O)2 ] (3) and [(1,3-bdba)(bpeta)2 (H2 O)] (4), wherein 1,3-bdba involved hydrated assemblies. The linear extended 4,4'-bphdba exhibited the formation of 1 : 1 cocrystals [(4,4'-bphdba)(bpe)] (5) and [(4,4'-bphdba-me)(bpeta)] (6). For 6, a hemiester was generated by an in-situ linker transformation. Single-crystal X-ray diffraction revealed all structures to be sustained by B(O)-H⋅⋅⋅N, B(O)-H⋅⋅⋅O, Ow -H⋅⋅⋅O, Ow -H⋅⋅⋅N, C-H⋅⋅⋅O, C-H⋅⋅⋅N, π⋅⋅⋅π, and C-H⋅⋅⋅π interactions. The cocrystals comprise 1D, 2D, and 3D hydrogen-bonded frameworks with components that display reactivities upon cocrystal formation and within the solids. In 1 and 3, the C=C bonds of the bpe molecules undergo a [2+2] photodimerization. UV radiation of each compound resulted in quantitative conversion of bpe into cyclobutane tpcb. The reactivity involving 1 occurred via 1D-to-2D single-crystal-to-single-crystal (SCSC) transformation. Our work supports the feasibility of the diboronic acids as formidable structural and reactivity building blocks for cocrystal construction.

4.
Pharmaceutics ; 14(2)2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-35214066

RESUMO

A cocrystal of the antihypertensive drug chlorthalidone (CTD) with caffeine (CAF) was obtained (CTD-CAF) by the slurry method, for which a 2:1 stoichiometric ratio was found by powder and single-crystal X-ray diffraction analysis. Cocrystal CTD-CAF showed a supramolecular organization in which CAF molecules are embedded in channels of a 3D network of CTD molecules. The advantage of the cocrystal in comparison to CTD is reflected in a threefold solubility increase and in the dose/solubility ratios, which diminished from near-unit values for D0D to 0.29 for D0CC. Furthermore, dissolution experiments under non-sink conditions showed improved performance of CTD-CAF compared with pure CTD. Subsequent studies showed that CTD-CAF cocrystals transform to CTD form I where CTD precipitation inhibition could be achieved in the presence of pre-dissolved polymer HPMC 80-120 cPs, maintaining supersaturation drug concentrations for at least 180 min. Finally, dissolution experiments under sink conditions unveiled that the CTD-CAF cocrystal induced, in pH-independent manner, faster and more complete CTD dissolution when compared to commercial tablets of CTD. Due to the stability and dissolution behavior of the novel CTD-CAF cocrystal, it could be used to develop solid dosage forms using a lower CTD dose to obtain the same therapeutic response and fewer adverse effects.

5.
Mol Pharm ; 19(2): 414-431, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-34967632

RESUMO

Nanoconfinement is a recent strategy to enhance solubility and dissolution of active pharmaceutical ingredients (APIs) with poor biopharmaceutical properties. In this work, we combine the advantage of cocrystals of racemic praziquantel (PZQ) containing a water-soluble coformer (i.e., increased solubility and supersaturation) and its confinement in a mesoporous silica material (i.e., increased dissolution rate). Among various potential cocrystalline phases of PZQ with dicarboxylic acid coformers, the cocrystal with glutaric acid (PZQ-GLU) was selected and successfully loaded by the melting method into nanopores of SBA-15 (experimental pore size of 5.6 nm) as suggested by physical and spectroscopic characterization using various complementary techniques like N2 adsorption, powder X-ray diffraction (PXRD), infrared spectroscopy (IR), solid-state NMR (ss-NMR), differential scanning calorimetry (DSC), and field emission-scanning electron microscopy (FE-SEM) analysis. The PZQ-GLU phase confined in SBA-15 presents more mobility according to ss-NMR studies but still retains its cocrystal-like features in the IR spectra, and it also shows depression of the melting transition temperature in DSC. On the contrary, pristine PZQ loaded into SBA-15 was found only in the amorphous state, according to the aforementioned studies. This dissimilar behavior of the composites was attributed to the larger crystal lattice of PZQ over the PZQ-GLU cocrystal (3320.1 vs 1167.9 Å3) and to stronger intermolecular interactions between PZQ and GLU, facilitating the confinement of a more mobile solid-like phase in the constrained channels. Powder dissolution studies under extremely nonsink conditions (SI = 0.014) of the confined PZQ-GLU and amorphous PZQ phases embedded in mesoporous silica showed transient supersaturation behavior when dissolving in simulated gastric fluid (HCl pH 1.2 at 37 ± 0.5 °C) in a similar fashion to the bare cocrystal PZQ-GLU. A comparison of the area under the curve (AUC0-90 min) of the dissolution profiles afforded a dissolution advantage of 2-fold (p < 0.05) of the new solid phases over pristine racemic PZQ after 90 min; under these conditions, the solubilized API reprecipitated as the recently discovered PZQ hemihydrate (PZQ-HH). In the presence of a cellulosic polymer, sustained solubilization of PZQ from composites SBA-15/PZQ or SBA-15/PZQ-GLU was observed, increasing AUC0-90 min up to 5.1-fold in comparison to pristine PZQ. The combination of a confined solid phase in mesoporous silica and a methylcellulose polymer in the dissolution medium effectively maintained the drug solubilized during times significant to promote absorption. Finally, powder dissolution studies under intermediate nonsink conditions (SI = 1.99) showed a fast release profile from the nanoconfined PZQ-GLU phase in SBA-15, which reached rapid saturation (95% drug dissolved at 30 min); the amorphous PZQ composite and bare PZQ-GLU also displayed an immediate release of the API but at a lower rate (69% drug dissolved at 30 min). In all of these cases, a large dissolution advantage was observed from any of the novel solid phases over PZQ.


Assuntos
Praziquantel , Dióxido de Silício , Varredura Diferencial de Calorimetria , Preparações Farmacêuticas , Praziquantel/química , Dióxido de Silício/química , Solubilidade , Difração de Raios X
6.
Chemistry ; 27(48): 12276-12283, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34076334

RESUMO

Hydrolysis reactions of di- and trinuclear organotin halides yielded large novel cage compounds containing Sn-O-Sn bridges. The molecular structures of two octanuclear tetraorganodistannoxanes showing double-ladder motifs, viz., [{Me3 SiCH2 (Cl)SnCH2 YCH2 Sn(OH)CH2 SiMe3 }2 (µ-O)2 ]2 [1, Y=p-(Me)2 SiC6 H4 -C6 H4 Si(Me)2 ] and [{Me3 SiCH2 (I)SnCH2 YCH2 Sn(OH)CH2 SiMe3 }2 (µ-O)2 ]2 ⋅0.48 I2 [2⋅0.48 I2 , Y=p-(Me)2 SiC6 H4 -C6 H4 Si(Me)2 ], and the hexanuclear cage-compound 1,3,6-C6 H3 (p-C6 H4 Si(Me)2 CH2 Sn(R)2 OSn(R)2 CH2 Si(Me)2 C6 H4 -p)3 C6 H3 -1,3,6 (3, R=CH2 SiMe3 ) are reported. Of these, the co-crystal 2⋅0.48 I2 exhibits the largest spacing of 16.7 Šreported to date for distannoxane-based double ladders. DFT calculations for the hexanuclear cage and a related octanuclear congener accompany the experimental work.

7.
Inorg Chem ; 59(20): 15120-15134, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33000942

RESUMO

The dianionic aza crown ether-dtc N,N'-bis(dithiocarbamate)-1,10-diaza-18-crown-6 (L2-) is a versatile ligand capable of yielding binuclear complexes with group 10 elements, also known as Ni-triade, [µ-(κ2-S,-S'-L)M2(PPh3)4]Cl2 (M = Pd (1), Pt (2)), [µ-(κ2-S,-S'-L)M2(PPh3)4](BPh4)2 (M = Pd (3), Pt (4)), and µ-(κ-S,-S'-L)Ni2(PPh3)2Cl2 (5), and has proven to be an excellent option to the design of metal-based drugs able to provide multiple response to cell resistance. Palladium and platinum complexes, 1 and 2, were tested for cytotoxicity in the human cervix carcinoma cell line HeLa-229, the human ovarian carcinoma cell line A2780, and the cisplatin-resistant mutant A2780cis, finding significant activity toward all three cancer cell lines, with low micromolar IC50 values, comparable to cisplatin. Markedly, against the cisplatin resistant cell line A2780cis, compound 2 exhibits better cytotoxic activity than the clinical drug (IC50 = 2.3 ± 0.2 µM for 2 versus 3.6 ± 0.5 µM for cisplatin). Moreover, an enhancement of the antitumor response is achieved when adding an equimolar amount of alkali metal chloride (NaCl or KCl) to the medium, for instance, testing compound 1 against the cisplatin-resistant A2780cis cells, the IC50 decreases from 9.3 ± 0.4 to 7.4 ± 0.3 and 5.4 ± 0.1 µM, respectively, after addition of the salt solution. For the platinum derivative 2, the IC50 improves by ca. 40% reaching 1.3 ± 0.1 µM when potassium chloride is added. Likewise, the resistant factor found for 2 (RF = 1) confirms that this complex circumvents cisplatin-resistance in A2780cis and is improved with the addition of potassium chloride (RF = 0.65). The presence of the aza crown ether moiety as linker in the systems studied herein is a key point since, in addition to allowing and facilitating interaction with alkali metal ions, this unit is flexible enough to adapt to a variety of environments, as confirmed by the X-ray crystal structures described, where different conformations and ways to fold in are found. In order to gain insight into the electronic and structural facts involved in the interaction of complex 2 with the alkali metal ions, a DFT study was performed, and the description of the molecular electrostatic potentials (MEPs) is also presented.


Assuntos
Antineoplásicos/farmacologia , Compostos Aza/farmacologia , Complexos de Coordenação/farmacologia , Éteres de Coroa/farmacologia , Tiocarbamatos/farmacologia , Antineoplásicos/síntese química , Compostos Aza/síntese química , Complexos de Coordenação/síntese química , Éteres de Coroa/síntese química , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Humanos , Paládio/química , Platina/química , Tiocarbamatos/síntese química
8.
Chempluschem ; 85(3): 548-560, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32202393

RESUMO

The thermodynamic stability of 1 : 1 and 2 : 1 boron-nitrogen (B←N) adducts formed between aromatic boronic esters with mono- and diamines was studied in solution by NMR and UV-vis spectroscopy with association energies (ΔG°) ranging from -11 to -28 kJ mol-1 . The effect of different substituents in the boronic ester, the nature of the diamine linker, and the effect of the solvent was explored. Stable 2 : 1 B←N adducts with diamines such as 1,3-diaminopropane were produced in solutions of hydrogen-bonding acceptor solvents (acetonitrile and ethyl acetate), which can be isolated in the solid state as crystalline solvates, whereas the use of noncoordinating solvents such as 1,2-dichloroethane afforded mainly 1 : 1 B←N adducts. In suitable combinations, aromatic bis-pyridyl diamines produced stable 2 : 1 B←N adducts that were isolated either as solvent-free solids, solvates, or cocrystals. In these crystalline forms, double-tweezer hosts were observed with an exceptional syn/anti conformational guest-adaptability driven by simultaneous donor-acceptor and C-H⋅⋅⋅π interactions in the tweezer cavities, resembling preorganized covalent tweezer hosts. Interestingly, cocrystals with electron-rich guests such as tetrathiafulvalene and pyrene showed non-centrosymmetric crystal lattices with infinite π-stacked donor-acceptor columns.

9.
Pharmaceutics ; 12(1)2019 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-31881696

RESUMO

The effect of hydroxypropyl methylcellulose (HPMC) and methylcellulose (Methocel® 60 HG) on the dissolution behavior of two cocrystals derived from nitazoxanide (NTZ), viz., nitazoxanide-glutaric acid (NTZ-GLU, 1:1) and nitazoxanide-succinic acid (NTZ-SUC, 2:1), was explored. Powder dissolution experiments under non-sink conditions showed similar dissolution profiles for the cocrystals and pure NTZ. However, pre-dissolved cellulosic polymer in the phosphate dissolution medium (pH 7.5) modified the dissolution profile of NTZ when starting from the cocrystals, achieving transient drug supersaturation. Subsequent dissolution studies under sink conditions of polymer-based pharmaceutical powder formulations with NTZ-SUC cocrystals gave a significant improvement of the apparent solubility of NTZ when compared with analogous formulations of pure NTZ and the physical mixture of NTZ and SUC. Scanning electron microscopy and powder X-ray diffraction analysis of samples recovered after the powder dissolution studies showed that the cocrystals undergo fast dissolution, drug supersaturation and precipitation both in the absence and presence of polymer, suggesting that the solubilization enhancement is due to polymer-induced delay of nucleation and crystal growth of the less soluble NTZ form. The study demonstrates that the incorporation of an appropriate excipient in adequate concentration can be a key factor for inducing and maintaining the solubilization of poorly soluble drugs starting from co-crystallized solid forms. In such a way, cocrystals can be suitable for the development of solid dosage forms with improved bioavailability and efficacy in the treatment of important parasitic and viral diseases, among others.

10.
Front Chem ; 7: 695, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31696109

RESUMO

We report channel confinement properties of an electron-deficient boron host derived from the orthogonal B←N interaction between a boronic ester and trans-pentafluorostilbazole. The boron host forms one-dimensional channels in the crystalline solid state when crystallized with common electron-rich aromatic petrochemicals (i.e., benzene, toluene, o-xylene) to form solvates and a cocrystal with stilbene. Molecular confinement of the electron-rich molecules in the solids is achieved through a combination of aryl-perfluoroaryl interactions (π-πF) and hydrogen bonds.

11.
Angew Chem Int Ed Engl ; 58(16): 5413-5416, 2019 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-30770618

RESUMO

B←N coordination supports a [2+2] photodimerization in the solid state. The bond is defined by an orthogonal interaction between stilbazole and a phenylboronic ester to enable a stereocontrolled and rapid photoreaction. The cyclobutane photoproduct affords a novel diboron bis-tweezer adduct that is used to separate a mixture of benzene and thiophene upon crystallization.

12.
Chempluschem ; 84(8): 1140-1144, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31943950

RESUMO

Crystalline framework materials have gained interest because of their many potential applications. A novel chiral tetrandrine salt (DNT) has been synthesized and characterized by conventional analytical techniques and single-crystal X-ray diffraction analysis, and its self-assembly behavior studied. In the solid state, 48 molecules of the compound self-assemble into an organic framework based on nanospherical aggregates formed exclusively through weak noncovalent interactions. Additionally, it was demonstrated by UV-vis spectroscopy and TGA that assembled DNT can include the Nile Red dye, giving a fluorescent material. To the best of our knowledge, these spherical assemblies are the largest among the purely synthetic organic self-assembled molecular crystals reported to date.

13.
ACS Omega ; 4(27): 22487-22496, 2019 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31909331

RESUMO

With the objective of studying the conformational and macrocyclic effects of selected metal chelates on their peroxidase activities, Cu2+ and Fe3+ complexes were synthesized with a macrocyclic derivative of ethylenediaminetetraacetic acid and o-phenylenediamine (abbreviated as edtaodH2) and its new open-chain analogue (edtabzH2). The Fe3+ complex of edtaodH2 has a peroxidase-like activity, whereas the complex of edtabzH2 does not. The X-ray study of the former shows the formation of a dimeric molecule {[Fe(edtaod)]2O} in which each metal with an octahedral coordination is overposed over the macrocyclic cavity, as a result of rigid macrocyclic frame, to form an Fe-O-Fe bridge; the exposure of the central metal to the environment facilitates the capture of oxygen to drive the biomimetic activity. The peroxidase-inactive Fe3+ complex consists of a mononuclear complex ion [Fe(edtabz)(H2O)]+, the metal ion of which is suited in a distorted pentagonal bipyramid to be protected from environmental oxygen. The copper(II) complexes, which have mononuclear structures with high thermodynamic stability compared with the iron(III) complexes, show no peroxidase activity. The steric effects play a fundamental role in the biomimetic activity.

14.
Acta Crystallogr E Crystallogr Commun ; 74(Pt 4): 441-444, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29765741

RESUMO

In the title compound, C7H6BNO2, the mean plane of the -B(OH)2 group is twisted by 21.28 (6)° relative to the cyano-phenyl ring mean plane. In the crystal, mol-ecules are linked by O-H⋯O and O-H⋯N hydrogen bonds, forming chains propagating along the [101] direction. Offset π-π and B⋯π stacking inter-actions link the chains, forming a three-dimensional network. Hirshfeld surface analysis shows that van der Waals inter-actions constitute a further major contribution to the inter-molecular inter-actions, with H⋯H contacts accounting for 25.8% of the surface.

15.
Acta Crystallogr C Struct Chem ; 74(Pt 4): 452-459, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29620029

RESUMO

Boronic esters are useful building blocks for crystal engineering and the generation of supramolecular architectures, including macrocycles, cages and polymers (one-, two- and three-dimensional), with potential utility in diverse fields such as separation, storage and luminescent materials. The novel dinuclear cyanophenylboronic ester described herein, namely 4,4'-(2,4,8,10-tetraoxa-3,9-diboraspiro[5.5]undecane-3,9-diyl)dibenzonitrile, C19H16B2N2O4, was prepared by condensation of 4-cyanophenylboronic acid and pentaerythritol and fully characterized by elemental analysis, IR and NMR (1H and 11B) spectroscopy, single-crystal X-ray diffraction analysis and TG-DSC (thermogravimetry-differential scanning calorimetry) studies. In addition, the photophysical properties were examined in solution and in the solid state by UV-Vis and fluorescence spectroscopies. Density functional theory (DFT) calculations with ethanol as solvent reproduced reasonably well the HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital) of the title compound. Hirshfeld surface and fingerprint plot analyses are presented to illustrate the supramolecular connectivity in the solid state.

16.
Chemistry ; 24(18): 4547-4551, 2018 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-29451343

RESUMO

Di- and trinuclear organotin(IV) complexes, in which the metal atoms are separated by large aromatic connectors, are useful building blocks for self-assembly. This is demonstrated by the preparation of [1+1], [2+2], and [2+3] macrocyclic and cage-type structures in combination with organic aromatic dicarboxylates. The linkage of the metal atoms by organic binders and the option of varying the number of reactive M-X sites generate versatile building blocks enabling molecular tectonics instead of the node-based strategy generally employed in metallo-supramolecular self-assembly.

17.
Chem Biol Interact ; 286: 34-44, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29476729

RESUMO

In this work, we report on the synthesis of two new mono-alkylated tetrandrine derivatives with acridine and anthracene units, MAcT and MAnT. The compounds were fully characterized by physicochemical techniques and single-crystal X-ray diffraction analysis. In addition, both derivatives were studied as nucleotide receptors and double-stranded DNA binders in aqueous phosphate buffer at pH = 7.2 using UV-vis and fluorescence spectroscopy. According to the molecular recognition studies, MAcT and MAnT exhibit high affinity (K ∼ 105 M-1) and selectivity for ds-DNA, presumably in an intercalation mode. Finally, the anti-proliferative effects of the tetrandrine derivatives on different cancer cell lines were explored, revealing promising activities. Particularly, the mono-anthracene tetrandrine derivative MAnT showed an IC50 of 2.74 µg/mL on the HeLa cervical cancer cell line, representing a value 3.3 times smaller than that obtained for unsubstituted tetrandrine. Examination of the cytotoxic effects on the HeLa cell line by inverted microscopy suggests that the cell death mechanism consists basically in apoptosis. The molecular modelling of three ds-DNA-MAcT complexes, suggested that the macrocycles may use an intercalation binding mode towards DNA. MAcT is predicted to bind into the major groove of the ds-DNA providing non-covalent interactions such as electrostatic, van der Waals and hydrophobic interactions that lead to selectivity. Overall experimental data supports the mode of action of MAnT and MAcT as cytotoxic compounds against cancer cell lines via a DNA interaction mechanism.


Assuntos
Acridinas/química , Antracenos/química , Benzilisoquinolinas/química , Compostos Macrocíclicos/síntese química , Células A549 , Acridinas/síntese química , Acridinas/farmacologia , Antracenos/síntese química , Antracenos/farmacologia , Apoptose/efeitos dos fármacos , Benzilisoquinolinas/síntese química , Benzilisoquinolinas/farmacologia , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , DNA/química , DNA/metabolismo , Células HeLa , Humanos , Interações Hidrofóbicas e Hidrofílicas , Substâncias Intercalantes/síntese química , Substâncias Intercalantes/química , Substâncias Intercalantes/farmacologia , Compostos Macrocíclicos/química , Compostos Macrocíclicos/farmacologia , Simulação de Acoplamento Molecular , Conformação de Ácido Nucleico , Eletricidade Estática
18.
Org Biomol Chem ; 16(1): 77-88, 2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-29192703

RESUMO

The substrate-controlled asymmetric total synthesis and absolute configurational assignment of biologically active 3α,4α-epoxy-5ß-pipermethystine, a minor component in the aerial parts of kava, has been achieved by featuring, as a key step, the environmentally friendly and direct synthesis of 2,3-epoxyamides from allyl amines. By using the chiron approach, first a carbohydrate-derived dehydropiperidine was prepared and subjected to a stereoselective tandem C-H/C[double bond, length as m-dash]C oxidation reaction. In this attempt, the required α,α-trans-epoxy-2-piperidone skeleton of the kava metabolite precursor was not achieved, although the tandem oxidation was highly stereoselective. However, starting from non-carbohydrate 3-hydroxy-4,5-dehydropiperidine, and using the same tandem oxidation, the target intermediate was obtained in high yield and complete unprecedented anti-stereoselectivity. Since the proposed mechanistic course of this tandem oxidation implies the transient formation of an α,ß-unsaturated amide followed by the subsequent epoxidation reaction, this second approach supports the previously established biotransformation proposal of (-)-pipermethystine to (-)-3α,4α-epoxy-5ß-pipermethystine.


Assuntos
Piperidonas/síntese química , Piridonas/síntese química , Estrutura Molecular , Piperidonas/química , Piridonas/química , Estereoisomerismo
19.
Acta Crystallogr C Struct Chem ; 73(Pt 3): 280-286, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28257026

RESUMO

The possibility of using less expensive and nontoxic metals, such as copper, as substitutes for more expensive heavy metals in the synthesis of new transition-metal complexes to be used as sensitizers in dye-sensitized solar cells (DSSCs) has stimulated research in this field. The novel photoluminescent copper(I) complex bis(triphenylphosphane-κP)[trans-(±)-2,4,5-tris(pyridin-2-yl)-2-imidazoline-κ2N2,N3]copper(I) hexafluorophosphate, [CuI(C18H15N5)(C18H15P)2]PF6, has been successfully synthesized and characterized by IR and 1H NMR spectroscopy, as well as by single-crystal X-ray diffraction and thermogravimetric analysis. The complex showed interesting photophysical properties, which were studied experimentally in solution and in the solid state by UV-Vis and fluorescence spectroscopy. Density functional theory (DFT) calculations with dichloromethane as solvent reproduced reasonably well the HOMO and LUMO orbitals of the title compound.

20.
Eur J Pharm Sci ; 96: 299-308, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27650458

RESUMO

The thermal behavior, phase stability, indicative stability and intrinsic dissolution rates of a series of cocrystals and cocrystal hydrates derived from the pharmaceutically active ingredient acetazolamide (ACZ) and 2-aminobenzamide (2ABAM), 2,3-dihydroxybenzoic acid (23DHBA), 2-hydroxybenzamide (2HBAM), 4-hydroxybenzoic acid (4HBA), nicotinamide (NAM) and picolinamide (PAM) as cocrystal formers have been evaluated. Upon heating in an inert atmosphere most of the cocrystals tested demonstrated first the elimination of the crystal former, followed by ACZ degradation. Only in cocrystals with NAM was melting observed. Under controlled temperature and relative humidity conditions all cocrystals tested were stable. However, phase stability tests in a medium simulating physiological conditions (HCl 0.01N, pH2.0) indicated that cocrystals ACZ-NAM-H2O and ACZ-PAM gradually transform into ACZ. All cocrystals examined gave enhanced intrinsic dissolution rates when compared to pure ACZ and the largest dissolution rate constants were measured for the cocrystals that transformed in the phase stability test (approximate two-fold increase of the dissolution rate constants). The series of cocrystals examined herein exhibits an inverse correlation between the intrinsic dissolution rates and the melting/decomposition temperatures as well as the dimension of the hydrogen-bonded ACZ aggregates found in the corresponding crystal structure, indicating that solid-state stability is the major influence on dissolution performance.


Assuntos
Acetazolamida/química , Acetazolamida/metabolismo , Cristalização , Solubilidade , Difração de Raios X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...