Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 10275, 2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37355695

RESUMO

Pollution by nanoplastic is a growing environmental and health concern. Currently the extent of nanoplastic in the environment can only be cumbersomely and indirectly estimated but not measured. To be able to quantify the extent of the problem, detection methods that can identify nanoplastic particles that are smaller than 1 [Formula: see text]m are critically needed. Here, we employ surface-enhanced Raman scattering (SERS) to image and identify single nanoplastic particles down to 100 nm in size. We can differentiate between single particles and agglomerates and our method allows an improvement in detection speed of [Formula: see text] compared to state-of-the art surface-enhanced Raman imaging. Being able to resolve single particles allows to measure the SERS enhancement factor on individual nanoplastic particles instead of averaging over a concentration without spatial information. Our results thus contribute to the better understanding and employment of SERS for nanoplastic detection and present an important step for the development of future sensors.


Assuntos
Microplásticos , Análise Espectral Raman , Análise Espectral Raman/métodos
2.
Science ; 377(6609): 995-998, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-36007051

RESUMO

One of the key insights of non-Hermitian photonics is that well-established concepts such as the laser can be operated in reverse to realize a coherent perfect absorber (CPA). Although conceptually appealing, such CPAs are limited so far to a single, judiciously shaped wavefront or mode. Here, we demonstrate how this limitation can be overcome by time-reversing a degenerate cavity laser based on a unique cavity that self-images any incident light field onto itself. Placing a weak, critically coupled absorber into this cavity, any incoming wavefront, even a complex and dynamically varying speckle pattern, is absorbed with close to perfect efficiency in a massively parallel interference process. These characteristics open up interesting new possibilities for applications in light harvesting, energy delivery, light control, and imaging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...