Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Behav Brain Res ; 348: 90-100, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29660442

RESUMO

Beneficial effects of omega-3 fatty acid intake on cognition are under debate as some studies show beneficial effects while others show no effects of omega-3 supplementation. These inconsistencies may be a result of inter-individual response variations, potentially caused by gene and diet interactions. SorLA is a multifunctional receptor involved in ligand trafficking including lipoprotein lipase and amyloid precursor protein. Decreased SorLA levels have been correlated to Alzheimer's disease, and omega-3 fatty acid supplementation is known to increase SorLA expression in neuronal cell lines and mouse models. We therefore addressed potential correlations between Sorl1 and dietary omega-3 in SorLA deficient mice (Sorl1-/-) and controls exposed to diets supplemented with or deprived of omega-3 during their entire development and lifespan (lifelong) or solely from the time of weaning (post weaning). Observed diet-induced effects were only evident when exposed to lifelong omega-3 supplementation or deprivation as opposed to post weaning exposure only. Lifelong exposure to omega-3 supplementation resulted in impaired spatial learning in Sorl1-/- mice. The vitamin C antioxidant capacity in the brains of Sorl1-/- mice was reduced, but reduced glutathione and vitamin E levels were increased, leaving the overall antioxidant capacity of the brain inconclusive. No gross morphological differences of hippocampal neurons were found to account for the altered behavior. We found a significant adverse effect in cognitive performance by combining SorLA deficiency with lifelong exposure to omega-3. Our results stress the need for investigations of the underlying molecular mechanisms to clarify the precise circumstances under which omega-3 supplementation may be beneficial.


Assuntos
Cognição/efeitos dos fármacos , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Graxos Ômega-3/farmacologia , Proteínas de Membrana Transportadoras/metabolismo , Receptores de LDL/metabolismo , Animais , Encéfalo/metabolismo , Cognição/fisiologia , Dieta , Suplementos Nutricionais , Ácidos Graxos Ômega-3/metabolismo , Hipocampo/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Proteínas de Membrana Transportadoras/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de LDL/genética
2.
FEBS J ; 283(13): 2476-93, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27192064

RESUMO

The sorting receptor SorLA is highly expressed in neurons and is also found in other polarized cells. The receptor has been reported to participate in the trafficking of several ligands, some of which are linked to human diseases, including the amyloid precursor protein, TrkB, and Lipoprotein Lipase (LpL). Despite this, only the trafficking in nonpolarized cells has been described so far. Due to the many differences between polarized and nonpolarized cells, we examined the localization and trafficking of SorLA in epithelial Madin-Darby canine kidney (MDCK) cells and rat hippocampal neurons. We show that SorLA is mainly found in sorting endosomes and on the basolateral surface of MDCK cells and in the somatodendritic domain of neurons. This polarized distribution of SorLA respectively depends on an acidic cluster and an extended version of this cluster and involves the cellular adaptor complex AP-1. Furthermore, we show that SorLA can mediate transcytosis across a tight cell layer.


Assuntos
Polaridade Celular/fisiologia , Proteínas Relacionadas a Receptor de LDL/metabolismo , Neurônios/metabolismo , Animais , Polaridade Celular/genética , Cães , Endossomos/metabolismo , Células HEK293 , Hipocampo/citologia , Humanos , Proteínas Relacionadas a Receptor de LDL/química , Células Madin Darby de Rim Canino , Camundongos , Transporte Proteico/fisiologia , Ratos , Ratos Sprague-Dawley , Transcitose/genética , Transcitose/fisiologia
3.
Neurochem Res ; 38(12): 2550-8, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24132641

RESUMO

ErbB receptors not only function in cancer, but are also key developmental regulators in the nervous system. We previously identified an ErbB1 peptide antagonist, Inherbin3, that is capable of inhibiting tumor growth in vitro and in vivo. In this study, we found that inhibition of ErbB1 kinase activity and activation of ErbB4 by NRG-1ß induced neurite extension, suggesting that ErbB1 and ErbB4 act as negative and positive regulators, respectively, of the neuritogenic response. Inherbin3, inhibited activation not only of ErbB1 but also of ErbB4 in primary neurons, strongly induced neurite outgrowth in rat cerebellar granule neurons, indicating that this effect mainly was due to inhibition of ErbB1 activation.


Assuntos
Cerebelo/efeitos dos fármacos , Grânulos Citoplasmáticos/efeitos dos fármacos , Receptores ErbB/antagonistas & inibidores , Neuritos/efeitos dos fármacos , Peptídeos/farmacologia , Animais , Sequência de Bases , Células Cultivadas , Cerebelo/citologia , Primers do DNA , Receptores ErbB/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Fosforilação , Reação em Cadeia da Polimerase , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...