Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Mol Neurosci ; 17: 1356343, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38559586

RESUMO

Inositol polyphosphate 5-phosphatase K (INPP5K), also known as SKIP (skeletal muscle and kidney-enriched inositol phosphatase), is a cytoplasmic enzyme with 5-phosphatase activity toward phosphoinositides (PIs). Mutations in INPP5K are associated with autosomal recessive congenital muscular dystrophy with cataracts and intellectual disability (MDCCAID). Notably, muscular dystrophy is characterized by the hypoglycosylation of dystroglycan. Thus, far, the underlying mechanisms are only partially understood. In this study, we show that INPP5K expression increases during brain development. Knockdown of INPP5K in the neuroblastoma-derived cell line N2A impaired their neuronal-like differentiation and interfered with protein glycosylation.

2.
Brain ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38527963

RESUMO

Heterozygous RTN2 variants have been previously identified in a limited cohort of families affected by autosomal dominant spastic paraplegia (SPG12-OMIM:604805) with a variable age of onset. Nevertheless, the definitive validity of SPG12 remains to be confidently confirmed due to scarcity of supporting evidence. In our study, we identified and validated seven novel or ultra-rare homozygous loss-of-function RTN2 variants in 14 individuals from seven consanguineous families with distal hereditary motor neuropathy (dHMN) using exome, genome and Sanger sequencing coupled with deep-phenotyping. All affected individuals (seven males and seven females, aged 9-50 years) exhibited weakness in the distal upper and lower limbs, lower limb spasticity, hyperreflexia, with an onset in the first decade of life. Nerve conduction studies revealed axonal motor neuropathy with neurogenic changes in the electromyography. Despite a slowly progressive disease course, all patients remained ambulatory over a mean disease duration of 19.71 ± 13.70 years. Characterisation of C. elegans RTN2 homolog loss-of-function variants demonstrated morphological and behavioural differences compared to the parental strain. Treatment of the mutant with an endoplasmic/sarcoplasmic reticulum Ca2+ reuptake inhibitor (2,5-di-tert-butylhydroquinone) rescued key phenotypic differences, suggesting a potential therapeutic benefit for RTN2-disorder. Despite Reticulon-2 being an endoplasmic reticulum (ER)-resident membrane shaping protein, our analysis of patient fibroblast cells did not find significant alterations in ER structure or the response to ER stress. Our findings delineate a distinct form of autosomal recessive dHMN with pyramidal features associated with Reticulon-2 deficiency. This phenotype shares similarities with SIGMAR1-related dHMN, and Silver-like syndromes, providing valuable insights into the clinical spectrum and potential therapeutic strategies for RTN2-related dHMN.

3.
Acta Neuropathol ; 147(1): 28, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38305941

RESUMO

Biallelic loss of SPG11 function constitutes the most frequent cause of complicated autosomal recessive hereditary spastic paraplegia (HSP) with thin corpus callosum, resulting in progressive multisystem neurodegeneration. While the impact of neuroinflammation is an emerging and potentially treatable aspect in neurodegenerative diseases and leukodystrophies, the role of immune cells in SPG11-HSP patients is unknown. Here, we performed a comprehensive immunological characterization of SPG11-HSP, including examination of three human postmortem brain donations, immunophenotyping of patients' peripheral blood cells and patient-specific induced pluripotent stem cell-derived microglia-like cells (iMGL). We delineate a previously unknown role of innate immunity in SPG11-HSP. Neuropathological analysis of SPG11-HSP patient brain tissue revealed profound microgliosis in areas of neurodegeneration, downregulation of homeostatic microglial markers and cell-intrinsic accumulation of lipids and lipofuscin in IBA1+ cells. In a larger cohort of SPG11-HSP patients, the ratio of peripheral classical and intermediate monocytes was increased, along with increased serum levels of IL-6 that correlated with disease severity. Stimulation of patient-specific iMGLs with IFNγ led to increased phagocytic activity compared to control iMGL as well as increased upregulation and release of proinflammatory cytokines and chemokines, such as CXCL10. On a molecular basis, we identified increased STAT1 phosphorylation as mechanism connecting IFNγ-mediated immune hyperactivation and SPG11 loss of function. STAT1 expression was increased both in human postmortem brain tissue and in an Spg11-/- mouse model. Application of an STAT1 inhibitor decreased CXCL10 production in SPG11 iMGL and rescued their toxic effect on SPG11 neurons. Our data establish neuroinflammation as a novel disease mechanism in SPG11-HSP patients and constitute the first description of myeloid cell/ microglia activation in human SPG11-HSP. IFNγ/ STAT1-mediated neurotoxic effects of hyperreactive microglia upon SPG11 loss of function indicate that immunomodulation strategies may slow down disease progression.


Assuntos
Paraplegia Espástica Hereditária , Animais , Camundongos , Humanos , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/patologia , Doenças Neuroinflamatórias , Proteínas/genética , Neurônios/patologia , Mutação
4.
Front Mol Neurosci ; 17: 1356326, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38419795

RESUMO

Guanosine diphosphate-mannose pyrophosphorylase B (GMPPB) catalyzes the conversion of mannose-1-phosphate and GTP to GDP-mannose, which is required as a mannose donor for the biosynthesis of glycan structures necessary for proper cellular functions. Mutations in GMPPB have been associated with various neuromuscular disorders such as muscular dystrophy and myasthenic syndromes. Here, we report that GMPPB protein abundance increases during brain and skeletal muscle development, which is accompanied by an increase in overall protein mannosylation. To model the human disorder in mice, we generated heterozygous GMPPB KO mice using CIRSPR/Cas9. While we were able to obtain homozygous KO mice from heterozygous matings at the blastocyst stage, homozygous KO embryos were absent beyond embryonic day E8.5, suggesting that the homozygous loss of GMPPB results in early embryonic lethality. Since patients with GMPPB loss-of-function manifest with neuromuscular disorders, we investigated the role of GMPPB in vitro. Thereby, we found that the siRNA-mediated knockdown of Gmppb in either primary myoblasts or the myoblast cell line C2C12 impaired myoblast differentiation and resulted in myotube degeneration. siRNA-mediated knockdown of Gmppb also impaired the neuron-like differentiation of N2A cells. Taken together, our data highlight the essential role of GMPPB during development and differentiation, especially in myogenic and neuronal cell types.

5.
Genet Med ; 26(3): 101034, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38054405

RESUMO

PURPOSE: SLC4A10 encodes a plasma membrane-bound transporter, which mediates Na+-dependent HCO3- import, thus mediating net acid extrusion. Slc4a10 knockout mice show collapsed brain ventricles, an increased seizure threshold, mild behavioral abnormalities, impaired vision, and deafness. METHODS: Utilizing exome/genome sequencing in families with undiagnosed neurodevelopmental disorders and international data sharing, 11 patients from 6 independent families with biallelic variants in SLC4A10 were identified. Clinico-radiological and dysmorphology assessments were conducted. A minigene assay, localization studies, intracellular pH recordings, and protein modeling were performed to study the possible functional consequences of the variant alleles. RESULTS: The families harbor 8 segregating ultra-rare biallelic SLC4A10 variants (7 missense and 1 splicing). Phenotypically, patients present with global developmental delay/intellectual disability and central hypotonia, accompanied by variable speech delay, microcephaly, cerebellar ataxia, facial dysmorphism, and infrequently, epilepsy. Neuroimaging features range from some non-specific to distinct neuroradiological findings, including slit ventricles and a peculiar form of bilateral curvilinear nodular heterotopia. In silico analyses showed 6 of 7 missense variants affect evolutionarily conserved residues. Functional analyses supported the pathogenicity of 4 of 7 missense variants. CONCLUSION: We provide evidence that pathogenic biallelic SLC4A10 variants can lead to neurodevelopmental disorders characterized by variable abnormalities of the central nervous system, including altered brain ventricles, thus resembling several features observed in knockout mice.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Animais , Humanos , Camundongos , Bicarbonatos/metabolismo , Antiportadores de Cloreto-Bicarbonato/metabolismo , Deficiência Intelectual/genética , Proteínas de Membrana Transportadoras , Camundongos Knockout , Transtornos do Neurodesenvolvimento/genética , Sódio/metabolismo , Bicarbonato de Sódio/metabolismo , Simportadores de Sódio-Bicarbonato/genética
6.
Brain ; 147(4): 1197-1205, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38141063

RESUMO

Dysfunctional RNA processing caused by genetic defects in RNA processing enzymes has a profound impact on the nervous system, resulting in neurodevelopmental conditions. We characterized a recessive neurological disorder in 18 children and young adults from 10 independent families typified by intellectual disability, motor developmental delay and gait disturbance. In some patients peripheral neuropathy, corpus callosum abnormalities and progressive basal ganglia deposits were present. The disorder is associated with rare variants in NUDT2, a mRNA decapping and Ap4A hydrolysing enzyme, including novel missense and in-frame deletion variants. We show that these NUDT2 variants lead to a marked loss of enzymatic activity, strongly implicating loss of NUDT2 function as the cause of the disorder. NUDT2-deficient patient fibroblasts exhibit a markedly altered transcriptome, accompanied by changes in mRNA half-life and stability. Amongst the most up-regulated mRNAs in NUDT2-deficient cells, we identified host response and interferon-responsive genes. Importantly, add-back experiments using an Ap4A hydrolase defective in mRNA decapping highlighted loss of NUDT2 decapping as the activity implicated in altered mRNA homeostasis. Our results confirm that reduction or loss of NUDT2 hydrolase activity is associated with a neurological disease, highlighting the importance of a physiologically balanced mRNA processing machinery for neuronal development and homeostasis.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Criança , Adulto Jovem , Humanos , RNA Mensageiro/genética , Monoéster Fosfórico Hidrolases/genética , Transtornos do Neurodesenvolvimento/genética , Deficiência Intelectual/genética , Nudix Hidrolases
7.
Am J Physiol Endocrinol Metab ; 325(5): E581-E594, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37819196

RESUMO

Male mice lacking the Na+-K+-2Cl- cotransporter Slc12a2 (Nkcc1) specifically in insulin-secreting ß-cells (Slc12a2ßKO) have reduced ß-cell mass and mild ß-cell secretory dysfunction associated with overweight, glucose intolerance, insulin resistance, and metabolic abnormalities. Here, we confirmed and extended previous results to female Slc12a2ßKO mice, which developed a similar metabolic syndrome-like phenotype as males, albeit milder. Notably, male and female Slc12a2ßKO mice developed overweight without consuming excess calories. Analysis of the feeding microstructure revealed that young lean Slc12a2ßKO male mice ate meals of higher caloric content and at a relatively lower frequency than normal mice, particularly during the night. In addition, overweight Slc12a2ßKO mice consumed significantly larger meals than lean mice. Therefore, the reduced satiation control of feeding precedes the onset of overweight and is worsened in older Slc12a2ßKO mice. However, the time spent between meals remained intact in lean and overweight Slc12a2ßKO mice, indicating conserved satiety responses to ad libitum feeding. Nevertheless, satiety was intensified during and after refeeding only in overweight males. In lean females, satiety responses to refeeding were delayed relative to age- and body weight-matched control mice but normalized in overweight mice. Since meal size did not change during refeeding, these data suggested that the satiety control of eating after fasting is impaired in lean Slc12a2ßKO mice before the onset of overweight and independently of their reduced satiation responses. Therefore, our results support the novel hypothesis that reduced satiation precedes the onset of overweight and the development of metabolic dysregulation.NEW & NOTEWORTHY Obesity, defined as excess fat accumulation, increases the absolute risk for metabolic diseases. Although obesity is usually attributed to increased food intake, we demonstrate that body weight gain can be hastened without consuming excess calories. In fact, impaired meal termination control, i.e., satiation, is detectable before the development of overweight in an animal model that develops a metabolic syndrome-like phenotype.


Assuntos
Insulinas , Síndrome Metabólica , Masculino , Feminino , Camundongos , Animais , Sobrepeso/genética , Saciação , Obesidade/genética , Ingestão de Energia , Insulina/metabolismo
8.
Brain ; 146(11): 4547-4561, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37459438

RESUMO

SLC4A10 is a plasma-membrane bound transporter that utilizes the Na+ gradient to drive cellular HCO3- uptake, thus mediating acid extrusion. In the mammalian brain, SLC4A10 is expressed in principal neurons and interneurons, as well as in epithelial cells of the choroid plexus, the organ regulating the production of CSF. Using next generation sequencing on samples from five unrelated families encompassing nine affected individuals, we show that biallelic SLC4A10 loss-of-function variants cause a clinically recognizable neurodevelopmental disorder in humans. The cardinal clinical features of the condition include hypotonia in infancy, delayed psychomotor development across all domains and intellectual impairment. Affected individuals commonly display traits associated with autistic spectrum disorder including anxiety, hyperactivity and stereotyped movements. In two cases isolated episodes of seizures were reported in the first few years of life, and a further affected child displayed bitemporal epileptogenic discharges on EEG without overt clinical seizures. While occipitofrontal circumference was reported to be normal at birth, progressive postnatal microcephaly evolved in 7 out of 10 affected individuals. Neuroradiological features included a relative preservation of brain volume compared to occipitofrontal circumference, characteristic narrow sometimes 'slit-like' lateral ventricles and corpus callosum abnormalities. Slc4a10 -/- mice, deficient for SLC4A10, also display small lateral brain ventricles and mild behavioural abnormalities including delayed habituation and alterations in the two-object novel object recognition task. Collapsed brain ventricles in both Slc4a10-/- mice and affected individuals suggest an important role of SLC4A10 in the production of the CSF. However, it is notable that despite diverse roles of the CSF in the developing and adult brain, the cortex of Slc4a10-/- mice appears grossly intact. Co-staining with synaptic markers revealed that in neurons, SLC4A10 localizes to inhibitory, but not excitatory, presynapses. These findings are supported by our functional studies, which show the release of the inhibitory neurotransmitter GABA is compromised in Slc4a10-/- mice, while the release of the excitatory neurotransmitter glutamate is preserved. Manipulation of intracellular pH partially rescues GABA release. Together our studies define a novel neurodevelopmental disorder associated with biallelic pathogenic variants in SLC4A10 and highlight the importance of further analyses of the consequences of SLC4A10 loss-of-function for brain development, synaptic transmission and network properties.


Assuntos
Convulsões , Simportadores de Sódio-Bicarbonato , Criança , Camundongos , Humanos , Animais , Simportadores de Sódio-Bicarbonato/genética , Simportadores de Sódio-Bicarbonato/metabolismo , Convulsões/genética , Mutação/genética , Neurotransmissores , Ácido gama-Aminobutírico/genética , Mamíferos/metabolismo , Antiportadores de Cloreto-Bicarbonato/genética , Antiportadores de Cloreto-Bicarbonato/metabolismo
9.
Nature ; 618(7964): 394-401, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37225996

RESUMO

The endoplasmic reticulum (ER) undergoes continuous remodelling via a selective autophagy pathway, known as ER-phagy1. ER-phagy receptors have a central role in this process2, but the regulatory mechanism remains largely unknown. Here we report that ubiquitination of the ER-phagy receptor FAM134B within its reticulon homology domain (RHD) promotes receptor clustering and binding to lipidated LC3B, thereby stimulating ER-phagy. Molecular dynamics (MD) simulations showed how ubiquitination perturbs the RHD structure in model bilayers and enhances membrane curvature induction. Ubiquitin molecules on RHDs mediate interactions between neighbouring RHDs to form dense receptor clusters that facilitate the large-scale remodelling of lipid bilayers. Membrane remodelling was reconstituted in vitro with liposomes and ubiquitinated FAM134B. Using super-resolution microscopy, we discovered FAM134B nanoclusters and microclusters in cells. Quantitative image analysis revealed a ubiquitin-mediated increase in FAM134B oligomerization and cluster size. We found that the E3 ligase AMFR, within multimeric ER-phagy receptor clusters, catalyses FAM134B ubiquitination and regulates the dynamic flux of ER-phagy. Our results show that ubiquitination enhances RHD functions via receptor clustering, facilitates ER-phagy and controls ER remodelling in response to cellular demands.


Assuntos
Autofagia , Estresse do Retículo Endoplasmático , Retículo Endoplasmático , Ubiquitinação , Autofagia/fisiologia , Retículo Endoplasmático/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ubiquitinas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Receptores do Fator Autócrino de Motilidade/metabolismo
10.
Nature ; 618(7964): 402-410, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37225994

RESUMO

Membrane-shaping proteins characterized by reticulon homology domains play an important part in the dynamic remodelling of the endoplasmic reticulum (ER). An example of such a protein is FAM134B, which can bind LC3 proteins and mediate the degradation of ER sheets through selective autophagy (ER-phagy)1. Mutations in FAM134B result in a neurodegenerative disorder in humans that mainly affects sensory and autonomic neurons2. Here we report that ARL6IP1, another ER-shaping protein that contains a reticulon homology domain and is associated with sensory loss3, interacts with FAM134B and participates in the formation of heteromeric multi-protein clusters required for ER-phagy. Moreover, ubiquitination of ARL6IP1 promotes this process. Accordingly, disruption of Arl6ip1 in mice causes an expansion of ER sheets in sensory neurons that degenerate over time. Primary cells obtained from Arl6ip1-deficient mice or from patients display incomplete budding of ER membranes and severe impairment of ER-phagy flux. Therefore, we propose that the clustering of ubiquitinated ER-shaping proteins facilitates the dynamic remodelling of the ER during ER-phagy and is important for neuronal maintenance.


Assuntos
Autofagia , Estresse do Retículo Endoplasmático , Retículo Endoplasmático , Proteínas Ubiquitinadas , Ubiquitinação , Animais , Humanos , Camundongos , Autofagia/genética , Retículo Endoplasmático/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Ubiquitinadas/metabolismo , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/patologia , Membranas Intracelulares/metabolismo
11.
Brain ; 146(10): 4247-4261, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37082944

RESUMO

Although the Na-K-Cl cotransporter (NKCC1) inhibitor bumetanide has prominent positive effects on the pathophysiology of many neurological disorders, the mechanism of action is obscure. Attention paid to elucidating the role of Nkcc1 has mainly been focused on neurons, but recent single cell mRNA sequencing analysis has demonstrated that the major cellular populations expressing NKCC1 in the cortex are non-neuronal. We used a combination of conditional transgenic animals, in vivo electrophysiology, two-photon imaging, cognitive behavioural tests and flow cytometry to investigate the role of Nkcc1 inhibition by bumetanide in a mouse model of controlled cortical impact (CCI). Here, we found that bumetanide rescues parvalbumin-positive interneurons by increasing interneuron-microglia contacts shortly after injury. The longitudinal phenotypic changes in microglia were significantly modified by bumetanide, including an increase in the expression of microglial-derived BDNF. These effects were accompanied by the prevention of CCI-induced decrease in hippocampal neurogenesis. Treatment with bumetanide during the first week post-CCI resulted in significant recovery of working and episodic memory as well as changes in theta band oscillations 1 month later. These results disclose a novel mechanism for the neuroprotective action of bumetanide mediated by an acceleration of microglial activation dynamics that leads to an increase in parvalbumin interneuron survival following CCI, possibly resulting from increased microglial BDNF expression and contact with interneurons. Salvage of interneurons may normalize ambient GABA, resulting in the preservation of adult neurogenesis processes as well as contributing to bumetanide-mediated improvement of cognitive performance.


Assuntos
Bumetanida , Inibidores de Simportadores de Cloreto de Sódio e Potássio , Camundongos , Animais , Bumetanida/farmacologia , Inibidores de Simportadores de Cloreto de Sódio e Potássio/farmacologia , Microglia/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Parvalbuminas/metabolismo , Parvalbuminas/farmacologia , Membro 2 da Família 12 de Carreador de Soluto , Interneurônios/metabolismo , Neurogênese
12.
Int J Mol Sci ; 24(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36834863

RESUMO

Patients with inactive thyroid hormone (TH) transporter MCT8 display intellectual disability due to compromised central TH transport and action. As a therapeutic strategy, application of thyromimetic, MCT8-independent compounds Triac (3,5,3'-triiodothyroacetic acid), and Ditpa (3,5-diiodo-thyropropionic acid) was proposed. Here, we directly compared their thyromimetic potential in Mct8/Oatp1c1 double knock-out mice (Dko) modeling human MCT8 deficiency. Dko mice received either Triac (50 ng/g or 400 ng/g) or Ditpa (400 ng/g or 4000 ng/g) daily during the first three postnatal weeks. Saline-injected Wt and Dko mice served as controls. A second cohort of Dko mice received Triac (400 ng/g) daily between postnatal weeks 3 and 6. Thyromimetic effects were assessed at different postnatal stages by immunofluorescence, ISH, qPCR, electrophysiological recordings, and behavior tests. Triac treatment (400 ng/g) induced normalized myelination, cortical GABAergic interneuron differentiation, electrophysiological parameters, and locomotor performance only when administered during the first three postnatal weeks. Ditpa (4000 ng/g) application to Dko mice during the first three postnatal weeks resulted in normal myelination and cerebellar development but only mildly improved neuronal parameters and locomotor function. Together, Triac is highly-effective and more efficient than Ditpa in promoting CNS maturation and function in Dko mice yet needs to be initiated directly after birth for the most beneficial effects.


Assuntos
Deficiência Intelectual Ligada ao Cromossomo X , Simportadores , Animais , Camundongos , Deficiência Intelectual Ligada ao Cromossomo X/tratamento farmacológico , Camundongos Knockout , Transportadores de Ácidos Monocarboxílicos , Neurogênese , Hormônios Tireóideos/uso terapêutico
13.
Biomedicines ; 11(1)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36672654

RESUMO

Proteins of the secretory pathway undergo glycosylation in the endoplasmic reticulum (ER) and the Golgi apparatus. Altered protein glycosylation can manifest in serious, sometimes fatal malfunctions. We recently showed that mutations in GDP-mannose pyrophosphorylase A (GMPPA) can cause a syndrome characterized by alacrima, achalasia, mental retardation, and myopathic alterations (AAMR syndrome). GMPPA acts as a feedback inhibitor of GDP-mannose pyrophosphorylase B (GMPPB), which provides GDP-mannose as a substrate for protein glycosylation. Loss of GMPPA thus enhances the incorporation of mannose into glycochains of various proteins, including α-dystroglycan (α-DG), a protein that links the extracellular matrix with the cytoskeleton. Here, we further characterized the consequences of loss of GMPPA for the secretory pathway. This includes a fragmentation of the Golgi apparatus, which comes along with a regulation of the abundance of several ER- and Golgi-resident proteins. We further show that the activity of the Golgi-associated endoprotease furin is reduced. Moreover, the fraction of α-DG, which is retained in the ER, is increased. Notably, WT cells cultured at a high mannose concentration display similar changes with increased retention of α-DG, altered structure of the Golgi apparatus, and a decrease in furin activity. In summary, our data underline the importance of a balanced mannose homeostasis for the secretory pathway.

14.
Cereb Cortex ; 33(10): 5906-5923, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-36573432

RESUMO

The Na-K-2Cl cotransporter NKCC1 is widely expressed in cells within and outside the brain. However, our understanding of its roles in brain functions throughout development, as well as in neuropsychiatric and neurological disorders, has been severely hindered by the lack of reliable data on its developmental and (sub)cellular expression patterns. We provide here the first properly controlled analysis of NKCC1 protein expression in various cell types of the mouse brain using custom-made antibodies and an NKCC1 knock-out validated immunohistochemical procedure, with parallel data based on advanced mRNA approaches. NKCC1 protein and mRNA are expressed at remarkably high levels in oligodendrocytes. In immature neurons, NKCC1 protein was located in the somata, whereas in adult neurons, only NKCC1 mRNA could be clearly detected. NKCC1 immunoreactivity is also seen in microglia, astrocytes, developing pericytes, and in progenitor cells of the dentate gyrus. Finally, a differential expression of NKCC1 splice variants was observed, with NKCC1a predominating in non-neuronal cells and NKCC1b in neurons. Taken together, our data provide a cellular basis for understanding NKCC1 functions in the brain and enable the identification of major limitations and promises in the development of neuron-targeting NKCC1-blockers.


Assuntos
Encéfalo , Neurônios , Camundongos , Animais , Membro 2 da Família 12 de Carreador de Soluto/genética , Membro 2 da Família 12 de Carreador de Soluto/metabolismo , Encéfalo/metabolismo , Neurônios/metabolismo , RNA Mensageiro/metabolismo , Hipocampo/metabolismo
15.
World J Biol Psychiatry ; 24(1): 1-11, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35172679

RESUMO

OBJECTIVES: Decreased vagal modulation, which has consistently been observed in schizophrenic patients, might contribute to increased cardiac mortality in schizophrenia. Previously, associations between CHRM2 (Cholinergic Receptor Muscarinic 2) and cardiac autonomic features have been reported. Here, we tested for possible associations between these polymorphisms and heart rate variability in patients with schizophrenia. METHODS: A total of three single nucleotide polymorphisms (SNPs) in CHRM2 (rs73158705 A>G, rs8191992 T>A and rs2350782 T>C) that achieved significance (p < 5 * 10-8) in genome-wide association studies for cardiac autonomic features were genotyped in 88 drug-naïve patients, 61 patients receiving antipsychotic medication and 144 healthy controls. Genotypes were analysed for associations with parameters of heart rate variability and complexity, in each diagnostic group. RESULTS: We observed a significantly altered heart rate variability in unmedicated patients with identified genetic risk status in rs73158705 A>G, rs8191992 T>A and rs2350782 T>C as compared to genotype non-risk status. In patients receiving antipsychotic medication and healthy controls, these associations were not observed. DISCUSSION: We report novel candidate genetic associations with cardiac autonomic dysfunction in schizophrenia, but larger cohorts are required for replication.


Assuntos
Antipsicóticos , Esquizofrenia , Humanos , Esquizofrenia/tratamento farmacológico , Esquizofrenia/genética , Antipsicóticos/efeitos adversos , Estudo de Associação Genômica Ampla , Receptor Muscarínico M2/genética , Polimorfismo de Nucleotídeo Único , Frequência Cardíaca/fisiologia
16.
PLoS One ; 17(12): e0279560, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36580474

RESUMO

The risk of type-2 diabetes and cardiovascular disease is higher in subjects with metabolic syndrome, a cluster of clinical conditions characterized by obesity, impaired glucose metabolism, hyperinsulinemia, hyperlipidemia and hypertension. Diuretics are frequently used to treat hypertension in these patients, however, their use has long been associated with poor metabolic outcomes which cannot be fully explained by their diuretic effects. Here, we show that mice lacking the diuretic-sensitive Na+K+2Cl-cotransporter-1 Nkcc1 (Slc12a2) in insulin-secreting ß-cells of the pancreatic islet (Nkcc1ßKO) have reduced in vitro insulin responses to glucose. This is associated with islet hypoplasia at the expense of fewer and smaller ß-cells. Remarkably, Nkcc1ßKO mice excessively gain weight and progressive metabolic syndrome when fed a standard chow diet ad libitum. This is characterized by impaired hepatic insulin receptor activation and altered lipid metabolism. Indeed, overweight Nkcc1ßKO but not lean mice had fasting and fed hyperglycemia, hypertriglyceridemia and non-alcoholic steatohepatitis. Notably, fasting hyperinsulinemia was detected earlier than hyperglycemia, insulin resistance, glucose intolerance and increased hepatic de novo gluconeogenesis. Therefore, our data provide evidence supporting the novel hypothesis that primary ß-cell defects related to Nkcc1-regulated intracellular Cl-homeostasis and ß-cell growth can result in the development of metabolic syndrome shedding light into additional potential mechanisms whereby chronic diuretic use may have adverse effects on metabolic homeostasis in susceptible individuals.


Assuntos
Hiperglicemia , Hiperinsulinismo , Hipertensão , Resistência à Insulina , Células Secretoras de Insulina , Síndrome Metabólica , Camundongos , Animais , Síndrome Metabólica/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Hiperinsulinismo/metabolismo , Hiperglicemia/metabolismo , Diuréticos , Hipertensão/metabolismo
17.
Genes (Basel) ; 13(11)2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36421807

RESUMO

BACKGROUND: Cardiac autonomic dysfunction (CADF) is a major contributor to increased cardiac mortality in schizophrenia patients. The aberrant function of voltage-gated ion channels, which are widely distributed in the brain and heart, may link schizophrenia and CADF. In search of channel-encoding genes that are associated with both CADF and schizophrenia, CACNA1C and KCNH2 are promising candidates. In this study, we tested for associations between genetic findings in both genes and CADF parameters in schizophrenia patients whose heart functions were not influenced by psychopharmaceuticals. METHODS: First, we searched the literature for single-nucleotide polymorphisms (SNPs) in CACNA1C and KCNH2 that showed genome-wide significant association with schizophrenia. Subsequently, we looked for such robust associations with CADF traits at these loci. A total of 5 CACNA1C SNPs and 9 KCNH2 SNPs were found and genotyped in 77 unmedicated schizophrenia patients and 144 healthy controls. Genotype-related impacts on heart rate (HR) dynamics and QT variability indices (QTvi) were analyzed separately in patients and healthy controls. RESULTS: We observed significantly increased QTvi in unmedicated patients with CADF-associated risk in CACNA1C rs2283274 C and schizophrenia-associated risk in rs2239061 G compared to the non-risk allele in these patients. Moreover, unmedicated patients with previously identified schizophrenia risk alleles in KCNH2 rs11763131 A, rs3807373 A, rs3800779 C, rs748693 G, and 1036145 T showed increased mean HR and QTvi as compared to non-risk alleles. CONCLUSIONS: We propose a potential pleiotropic role for common variation in CACNA1C and KCNH2 associated with CADF in schizophrenia patients, independent of antipsychotic medication, that predisposes them to cardiac arrhythmias and premature death.


Assuntos
Antipsicóticos , Esquizofrenia , Humanos , Esquizofrenia/tratamento farmacológico , Canais de Cálcio Tipo L/genética , Polimorfismo de Nucleotídeo Único , Antipsicóticos/uso terapêutico , Genótipo , Canal de Potássio ERG1/genética
18.
Front Nutr ; 9: 981511, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313076

RESUMO

GDP-Mannose Pyrophosphorylase B (GMPPB) is a key enzyme for glycosylation. Previous studies suggested a dysregulation of GMPBB and mannose in depression. Evidence, however, was sporadic and interventions to reverse these changes are unknown. Here, we show that GMPPB protein, but not RNA abundance is increased in the postmortem prefrontal cortex (PFC) of depressed patients and the chronic variable stress (CVS) mouse-model. This is accompanied by higher plasma mannose levels. Importantly, a single dose of intraperitoneally administered vitamin B12, which has previously been shown to rapidly reverse behavioral symptoms and molecular signatures of chronic stress in mice, normalized GMPPB plasma mannose levels and elevated GDP-mannose abundance. In summary, these data underline metabolic dysregulation in chronic stress and depression and provide further support for rapid effects of vitamin B12 on chronic stress.

19.
Leukemia ; 36(7): 1843-1849, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35654819

RESUMO

Mutations of the JAK2 gene are frequent aberrations in the aging hematopoietic system and in myeloid neoplasms. While JAK-inhibitors efficiently reduce hyperinflammation induced by the constitutively active mutated JAK2 kinase, the malignant clone and abundance of mutated cells remains rather unaffected. Here, we sought to assess for genetic vulnerabilities of JAK2-mutated clones. We identified lysine-specific demethylase KDM4C as a selective genetic dependency that persists upon JAK-inhibitor treatment. Genetic inactivation of KDM4C in human and murine JAK2-mutated cells resulted in loss of cell competition and reduced proliferation. These findings led to reduced disease penetrance and improved survival in xenograft models of human JAK2-mutated cells. KDM4C deleted cells showed alterations in target histone residue methylation and target gene expression, resulting in induction of cellular senescence. In summary, these data establish KDM4C as a specific dependency and therapeutic target in JAK2-mutated cells that is essential for oncogenic signaling and prevents induction of senescence.


Assuntos
Histona Desmetilases , Neoplasias , Animais , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Humanos , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Metilação , Camundongos , Neoplasias/genética , Transdução de Sinais
20.
Nat Rev Dis Primers ; 8(1): 41, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35710757

RESUMO

Genetic pain loss includes congenital insensitivity to pain (CIP), hereditary sensory neuropathies and, if autonomic nerves are involved, hereditary sensory and autonomic neuropathy (HSAN). This heterogeneous group of disorders highlights the essential role of nociception in protecting against tissue damage. Patients with genetic pain loss have recurrent injuries, burns and poorly healing wounds as disease hallmarks. CIP and HSAN are caused by pathogenic genetic variants in >20 genes that lead to developmental defects, neurodegeneration or altered neuronal excitability of peripheral damage-sensing neurons. These genetic variants lead to hyperactivity of sodium channels, disturbed haem metabolism, altered clathrin-mediated transport and impaired gene regulatory mechanisms affecting epigenetic marks, long non-coding RNAs and repetitive elements. Therapies for pain loss disorders are mainly symptomatic but the first targeted therapies are being tested. Conversely, chronic pain remains one of the greatest unresolved medical challenges, and the genes and mechanisms associated with pain loss offer new targets for analgesics. Given the progress that has been made, the coming years are promising both in terms of targeted treatments for pain loss disorders and the development of innovative pain medicines based on knowledge of these genetic diseases.


Assuntos
Canalopatias , Neuropatias Hereditárias Sensoriais e Autônomas , Insensibilidade Congênita à Dor , Neuropatias Hereditárias Sensoriais e Autônomas/complicações , Neuropatias Hereditárias Sensoriais e Autônomas/diagnóstico , Neuropatias Hereditárias Sensoriais e Autônomas/genética , Humanos , Dor/genética , Insensibilidade Congênita à Dor/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...