Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
RSC Adv ; 14(18): 12735-12741, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38645522

RESUMO

In the present work, the temperature-dependent phase behavior of a C10E4 based microemulsion is studied in different meso-macroporous glasses, as a function of their pore diameter. The phase behavior in these pores is investigated by small-angle X-ray scattering (SAXS). The crucial parameter we discuss based on the SAXS results is the domain size of the bicontinuous phase. Using a simplified model to fit the scattering data, we can observe the microemulsion inside the pores. These experiments reveal a temperature-dependent change in domain sizes of the bicontinuous microemulsion only for large pores.

2.
Angew Chem Int Ed Engl ; 62(12): e202218039, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36656994

RESUMO

The chemical selectivity and faradaic efficiency of high-index Cu facets for the CO2 reduction reaction (CO2 RR) is investigated. More specifically, shape-controlled nanoparticles enclosed by Cu {hk0} facets are fabricated using Cu multilayer deposition at three distinct layer thicknesses on the surface facets of Au truncated ditetragonal nanoprisms (Au DTPs). Au DTPs are shapes enclosed by 12 high-index {310} facets. Facet angle analysis confirms DTP geometry. Elemental mapping analysis shows Cu surface layers are uniformly distributed on the Au {310} facets of the DTPs. The 7 nm Au@Cu DTPs high-index {hk0} facets exhibit a CH4 : CO product ratio of almost 10 : 1 compared to a 1 : 1 ratio for the reference 7 nm Au@Cu nanoparticles (NPs). Operando Fourier transform infrared spectroscopy spectra disclose reactive adsorbed *CO as the main intermediate, whereas CO stripping experiments reveal the high-index facets enhance the *CO formation followed by rapid desorption or hydrogenation.

3.
Mol Biol Evol ; 39(12)2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36409584

RESUMO

In tRNA maturation, CCA-addition by tRNA nucleotidyltransferase is a unique and highly accurate reaction. While the mechanism of nucleotide selection and polymerization is well understood, it remains a mystery why bacterial and eukaryotic enzymes exhibit an unexpected and surprisingly low tRNA substrate affinity while they efficiently catalyze the CCA-addition. To get insights into the evolution of this high-fidelity RNA synthesis, the reconstruction and characterization of ancestral enzymes is a versatile tool. Here, we investigate a reconstructed candidate of a 2 billion years old CCA-adding enzyme from Gammaproteobacteria and compare it to the corresponding modern enzyme of Escherichia coli. We show that the ancestral candidate catalyzes an error-free CCA-addition, but has a much higher tRNA affinity compared with the extant enzyme. The consequence of this increased substrate binding is an enhanced reverse reaction, where the enzyme removes the CCA end from the mature tRNA. As a result, the ancestral candidate exhibits a lower catalytic efficiency in vitro as well as in vivo. Furthermore, the efficient tRNA interaction leads to a processive polymerization, while the extant enzyme catalyzes nucleotide addition in a distributive way. Thus, the modern enzymes increased their polymerization efficiency by lowering the binding affinity to tRNA, so that CCA synthesis is efficiently promoted due to a reduced reverse reaction. Hence, the puzzling and at a first glance contradicting and detrimental weak substrate interaction represents a distinct activity enhancement in the evolution of CCA-adding enzymes.


Assuntos
Nucleotídeos , RNA de Transferência , RNA de Transferência/genética
4.
ACS Appl Mater Interfaces ; 14(16): 18420-18430, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35417125

RESUMO

Cathode catalyst layers of proton exchange membrane fuel cells (PEMFCs) typically consist of carbon-supported platinum catalysts with varying weight ratios of proton-conducting ionomers. N-Doping of carbon support materials is proposed to enhance the performance and durability of the cathode layer under operating conditions in a PEMFC. However, a detailed understanding of the contributing N-moieties is missing. Here, we report the successful synthesis and fuel cell implementation of Pt electrocatalysts supported on N-doped carbons, with a focus on the analysis of the N-induced effect on catalyst performance and durability. A customized fluidized bed reduction reactor was used to synthesize highly monodisperse Pt nanoparticles deposited on N-doped carbons (N-C), the catalytic oxygen reduction reaction activity and stability of which matched those of state-of-the-art PEMFC catalysts. Operando high-energy X-ray diffraction experiments were conducted using a fourth generation storage ring; the light of extreme brilliance and coherence allows investigating the impact of N-doping on the degradation behavior of the Pt/N-C catalysts. Tests in liquid electrolytes were compared with tests in membrane electrode assemblies in single-cell PEMFCs. Our analysis refines earlier views on the subject of N-doped carbon catalyst supports: it provides evidence that heteroatom doping and thus the incorporation of defects into the carbon backbone do not mitigate the carbon corrosion during high-potential cycling (1-1.5 V) and, however, can promote the cell performance under usual PEMFC operating conditions (0.6-0.9 V).

5.
Nat Mater ; 19(1): 77-85, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31570820

RESUMO

The reduction of Pt content in the cathode for proton exchange membrane fuel cells is highly desirable to lower their costs. However, lowering the Pt loading of the cathodic electrode leads to high voltage losses. These voltage losses are known to originate from the mass transport resistance of O2 through the platinum-ionomer interface, the location of the Pt particle with respect to the carbon support and the supports' structures. In this study, we present a new Pt catalyst/support design that substantially reduces local oxygen-related mass transport resistance. The use of chemically modified carbon supports with tailored porosity enabled controlled deposition of Pt nanoparticles on the outer and inner surface of the support particles. This resulted in an unprecedented uniform coverage of the ionomer over the high surface-area carbon supports, especially under dry operating conditions. Consequently, the present catalyst design exhibits previously unachieved fuel cell power densities in addition to high stability under voltage cycling. Thanks to the Coulombic interaction between the ionomer and N groups on the carbon support, homogeneous ionomer distribution and reproducibility during ink manufacturing process is ensured.

6.
Rev. méd. Paraná ; 71(2): 24-29, jul.-dez. 2013.
Artigo em Português | LILACS-Express | LILACS | ID: biblio-1352490

RESUMO

Há muito tempo, procura-se uma alternativa para cobrir as feridas causadas por injúria térmica. Alguns autores consideram a membrana amniótica (MA) o elemento mais adequado para substituir a epiderme. O objetivo deste trabalho é utilizar a MA acelular como um substituto definitivo da derme em queimaduras. 24 ratos Wistar foram submetidos a um processo de injúria térmica. Dividiram-se os animais em dois grupos: controle e experimental. No último, foi aplicada MA sobre a ferida. Semanalmente, realizou-se a análise planimétrica das áreas da injúria. No 26º dia foram coletados quatro segmentos da lesão para a avaliação histológica de dois tipos de colágeno. Foi encontrada diferença significativa entre as médias das 4 áreas (p<0,001) nos grupos A e B. Em relação à porcentagem de colágeno tipo I e III não houve diferença significativa entre os grupos (p=0,598). Não ocorreu diferença significativa com o uso da MA acelular


Long time an alternative to cover the wounds caused by thermal injury has been searched. Some authors consider the amniotic membrane (AM) is the best element to replace the epidermis. The objective of this study is to use the acellular amniotic membrane as a permanent replacement to dermis in burns. 24 male Wistar rats were submitted to a process of thermal injury. The animals were divided in two groups: control and experimental. In the experimental group, the AM has been applied to the wound. Every week was made the planimetric analysis of the areas of injury. On the 26th day, four segments of the lesion were collected to a histological rating of two types of collagen. The study showed significant difference between the average of the four areas (p <0.001) in A and B groups. About the percentage of type I and III collagen there was no significant difference between the groups (p = 0.598). The use of acellular amniotic membrane was not effective

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA