Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(19)2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36234223

RESUMO

In order to obtain a widespread application of Additive Manufactured (AM) technology in the aircraft industry for fatigue critical parts, a detailed characterization of the Fatigue and Damage Tolerance (F&DT) behavior of structural components is required. Metal AM techniques in particular are prone to internal defects inherently present due to the nature of the process, which have a detrimental effect on fatigue properties. In the present work, Ti6Al4V and Inconel 718 coupons with artificially induced defects of different dimensions were produced by the Laser Powder Bed Fusion (LPBF) technique. Fatigue tests were performed, and a different defect sensitiveness was observed between the two materials with Inconel being more defect tolerant compared to Titanium. The environmental role at the crack tip of internal defects was discussed, and based on a purely fracture mechanics approach, a simplified stress-life-defect size model was finally devised. The experimental test results together with the information obtained from the fracture surface analysis of tested samples are used to validate the model predictions. The proposed approach could be adopted to define a critical defect size map to be used for tailored Non-Destructive Testing (NDT) evaluation.

2.
Polymers (Basel) ; 14(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36145961

RESUMO

An integrable sensor inlay for monitoring crack initiation and growth inside bondlines of structural carbon fiber-reinforced plastic (CFRP) components is presented. The sensing structures are sandwiched between crack-stopping poly(vinyliden fluoride) (PVDF) and a thin reinforcing polyetherimide (PEI) layer. Good adhesion at all interfaces of the sensor system and to the CFRP material is crucial, as weak bonds can counteract the desired crack-stopping functionality. At the same time, the chosen reinforcing layer must withstand high strains, safely support the metallic measuring grids, and possess outstanding fatigue strength. We show that this robust sensor system, which measures the strain at two successive fronts inside the bondline, allows to recognize cracks in the proximity of the inlay regardless of the mechanical loads. Feasibility is demonstrated by static load tests as well as cyclic long-term fatigue testing for up to 1,000,000 cycles. In addition to pure crack detection, crack distance estimation based on sensor signals is illustrated. The inlay integration process is developed with respect to industrial applicability. Thus, implementation of the proposed system will allow the potential of lightweight CFRP constructions to be better exploited by expanding the possibilities of structural adhesive bonding.

3.
Polymers (Basel) ; 13(22)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34833199

RESUMO

The article reports on the influence of annealing PVDF in an autoclave process on the PVDF phase composition. DSC, FTIR and XRD measurements serve to observe the phase changes in an already stretched, polarised and ß-phase rich film. Annealing was conducted between 90 and 185 ∘C to cover a broad range of curing processes in an autoclave. The ß-phase is found to be stable up to near the melting range at 170 ∘C. At 175 ∘C, the non-piezoelectric α-phase dominates and the piezoelectric γ- and γ'-phases appear. The γ-phase grows at elevated temperatures and replaces the ß-phase. This observation stresses the importance of developing new methods to reactivate the polarisation after annealing, in particular for the integration of PVDF as a sensor in laminated structures, such as CFRP.

4.
Polymers (Basel) ; 13(18)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34578029

RESUMO

The use of pressure-actuated cellular structures (PACS) is an effective approach for the application of compliant mechanisms. Analogous to the model in nature, the Venus flytrap, they are made of discrete pressure-activated rows and can be deformed with high stiffness at a high deformation rate. In previous work, a new innovative approach in their integral textile-based manufacturing has been demonstrated based on the weaving technique. In this work, the theoretical and experimental work on the further development of PACS from simple single-row to double-row PACS with antagonistic deformation capability is presented. Supported by experimental investigations, the necessary adaptations in the design of the textile preform and the polymer composite design are presented and concretized. Based on the results of pre-simulations of the deformation capacity of the new PACS, their performance was evaluated, the results of which are presented.

5.
Sensors (Basel) ; 21(11)2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199673

RESUMO

Disbond arrest features combined with a structural health monitoring system for permanent bondline surveillance have the potential to significantly increase the safety of adhesive bonds in composite structures. A core requirement is that the integration of such features is achieved without causing weakening of the bondline. We present the design of a smart inlay equipped with a micro strain sensor-system fabricated on a polyvinyliden fluorid (PVDF) foil material. This material has proven disbond arrest functionality, but has not before been used as a substrate in lithographic micro sensor fabrication. Only with special pretreatment can it meet the requirements of thin film sensor elements regarding surface roughness and adhesion. Moreover, the sensor integration into composite material using a standard manufacturing procedure reveals that the smart inlays endure this process even though subjected to high temperatures, curing reactions and plasma treatment. Most critical is the substrate melting during curing when sensory function is preserved with a covering caul plate that stabilizes the fragile measuring grids. The smart inlays are tested by static mechanical loading, showing that they can be stretched far beyond critical elongations of composites before failure. The health monitoring function is verified by testing the specimens with integrated sensors in a cantilever bending setup. The results prove the feasibility of micro sensors detecting strain gradients on a disbond arresting substrate to form a so-called multifunctional bondline.


Assuntos
Adesivos , Resinas Compostas
6.
Bioinspir Biomim ; 9(4): 046005, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25289521

RESUMO

A remarkable property of nastic, shape changing plants is their complete fusion between actuators and structure. This is achieved by combining a large number of cells whose geometry, internal pressures and material properties are optimized for a given set of target shapes and stiffness requirements. An advantage of such a fusion is that cell walls are prestressed by cell pressures which increases, decreases the overall structural stiffness, weight. Inspired by the nastic movement of plants, Pagitz et al (2012 Bioinspir. Biomim. 7) published a novel concept for pressure actuated cellular structures. This article extends previous work by introducing a modular approach to adaptive structures. An algorithm that breaks down any continuous target shapes into a small number of standardized modules is presented. Furthermore it is shown how cytoskeletons within each cell enhance the properties of adaptive modules. An adaptive passenger seat and an aircrafts leading, trailing edge is used to demonstrate the potential of a modular approach.


Assuntos
Adaptação Fisiológica/fisiologia , Aeronaves/instrumentação , Biomimética/instrumentação , Modelos Biológicos , Movimento/fisiologia , Fenômenos Fisiológicos Vegetais , Tropismo/fisiologia , Desenho Assistido por Computador , Citoesqueleto/fisiologia , Desenho de Equipamento , Análise de Falha de Equipamento , Integração de Sistemas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA