Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 11993, 2024 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796576

RESUMO

Observational studies indicate that serum sex hormone-binding globulin (SHBG) levels are inversely correlated with blood lipid levels and coronary heart disease (CHD) risk. Given that dyslipidemia is an established risk factor for CHD, we aim to employ Mendelian randomization (MR) in conjunction with mediation analysis to confirm the mediating role of blood lipid levels in the association between SHBG and CHD. First, we assessed the causality between serum SHBG levels and five cardiovascular diseases using univariable MR. The results revealed causality between SHBG levels and reduced risk of CHD, myocardial infarction, as well as hypertension. Specifically, the most significant reduction was observed in CHD risk, with an odds ratio of 0.73 (95% CI 0.63-0.86) for each one-standard-deviation increase in SHBG. The summary-level data of serum SHBG levels and CHD are derived from a sex-specific genome-wide association study (GWAS) conducted by UK Biobank (sample size = 368,929) and a large-scale GWAS meta-analysis (60,801 cases and 123,504 controls), respectively. Subsequently, we further investigated the mediating role of blood lipid level in the association between SHBG and CHD. Mediation analysis clarified the mediation proportions for four mediators: high cholesterol (48%), very low-density lipoprotein cholesterol (25.1%), low-density lipoprotein cholesterol (18.5%), and triglycerides (44.3%). Summary-level data for each mediator were sourced from the UK Biobank and publicly available GWAS. The above results confirm negative causality between serum SHBG levels and the risk of CHD, myocardial infarction, and hypertension, with the causal effect on reducing CHD risk largely mediated by the improvement of blood lipid profiles.


Assuntos
Doença das Coronárias , Estudo de Associação Genômica Ampla , Lipídeos , Análise da Randomização Mendeliana , Globulina de Ligação a Hormônio Sexual , Feminino , Humanos , Masculino , Doença das Coronárias/genética , Doença das Coronárias/sangue , Doença das Coronárias/epidemiologia , Lipídeos/sangue , Análise de Mediação , Fatores de Risco , Globulina de Ligação a Hormônio Sexual/metabolismo , Globulina de Ligação a Hormônio Sexual/genética , Globulina de Ligação a Hormônio Sexual/análise
2.
Artigo em Inglês | MEDLINE | ID: mdl-38687336

RESUMO

Aims: Diabetic heart damage can lead to cardiomyocyte death, which endangers human health. Baicalin (BAI) is a bioactive compound that plays an important role in cardiovascular diseases. Sentrin/SUMO-specific protease 1 (SENP1) regulates the de-small ubiquitin-like modifier (deSUMOylation) process of Sirtuin 3 (SIRT3) and plays a crucial role in regulating mitochondrial mass and preventing cell injury. Our hypothesis is that BAI regulates the deSUMOylation level of SIRT3 through SENP1 to enhance mitochondrial quality control and prevent cell death, ultimately improving diabetic cardiomyopathy (DCM). Results: The protein expression of SENP1 decreased in cardiomyocytes induced by high glucose and in db/db mice. The cardioprotective effects of BAI were eliminated by silencing endogenous SENP1, whereas overexpression of SENP1 showed similar cardioprotective effects to those of BAI. Furthermore, co-immunoprecipitation experiments showed that BAI's cardioprotective effect was due to the inhibition of the SUMOylation modification level of SIRT3 by SENP1. Inhibition of SENP1 expression resulted in an increase in SUMOylation of SIRT3. This led to increased acetylation of mitochondrial protein, accumulation of reactive oxygen species, impaired autophagy, impaired mitochondrial oxidative phosphorylation, and increased cell death. None of these changes could be reversed by BAI. Conclusion: BAI improves DCM by promoting SIRT3 deSUMOylation through SENP1, restoring mitochondrial stability, and preventing the cell death of cardiomyocytes. Innovation: This study proposes for the first time that SIRT3 SUMOylation modification is involved in the development of DCM and provides in vivo and in vitro data support that BAI inhibits cardiomyocyte ferroptosis and apoptosis in DCM through SENP1. [Figure: see text].

3.
Am J Physiol Cell Physiol ; 326(3): C724-C741, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38223927

RESUMO

Diabetic cardiomyopathy (DCM) is closely related to ferroptosis, a new type of cell death that mainly manifests as intracellular iron accumulation and lipid peroxidation. Paeoniflorin (PA) helps to improve impaired glucose tolerance, influences the distribution of the intestinal flora, and induces significant resistance to ferroptosis in several models. In this study, we found that PA improved cardiac dysfunction in mice with DCM by alleviating myocardial damage, resisting oxidative stress and ferroptosis, and changing the community composition and structure of the intestinal microbiota. Metabolomics analysis revealed that PA-treated fecal microbiota transplantation affected metabolites in DCM mice. Based on in vivo and in vitro experiments, 11,12-epoxyeicosatrienoic acid (11,12-EET) may serve as a key contributor that mediates the cardioprotective and antiferroptotic effects of PA-treated fecal microbiota transplantation (FMT) in DCM mice.NEW & NOTEWORTHY This study demonstrated for the first time that paeoniflorin (PA) exerts protective effects in diabetic cardiomyopathy mice by alleviating myocardial damage, resisting ferroptosis, and changing the community composition and structure of the intestinal microbiota, and 11,12-epoxyeicosatrienoic acid (11,12-EET) may serve as a key contributor in its therapeutic efficacy.


Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , Ferroptose , Microbioma Gastrointestinal , Glucosídeos , Monoterpenos , Animais , Camundongos , Cardiomiopatias Diabéticas/tratamento farmacológico , Miocárdio
4.
Gene ; 893: 147917, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37866664

RESUMO

Imatinib is the current gold standard for patients with chronic myeloid leukemia (CML). However, the primary and acquired drug resistance seriously limits the efficacy. To identify novel therapeutic target in Imatinib-resistant CML is of crucial clinical significance. CircRNAs have been demonstrated the essential regulatory roles in the progression and drug resistance of cancers. In this study, we identified a novel circRNA (circ_SIRT1), derived from the SIRT1, which is up-regulated in CML. The high expression of circ_SIRT1 is correlated with drug resistance in CML. Knockdown of circ_SIRT1 regulated K562/R cells viability, invasion and apoptosis. Besides, the inhibition of circ_SIRT1 attenuated autophagy level and reduced IC50 to Imatinib of K562/R cells. Mechanistically, circ_SIRT1 directly binds to the transcription factor Eukaryotic Translation Initiation Factor 4A3(EIF4A3) and regulated EIF4A3-mediated transcription of Autophagy Related 12 (ATG12), thereby affecting Imatinib resistance and autophagy level. Overexpression of ATG12 reversed the regulative effects induced by knockdown of circ_SIRT1. Taken together, our findings revealed circ_SIRT1 acted as a potential tumor regulator in CML and unveiled the underlying mechanism on regulating Imatinib resistance. circ_SIRT1 may serve as a novel therapeutic target and provide crucial clinical implications for Imatinib-resistant CML treatment.


Assuntos
Antineoplásicos , Leucemia Mielogênica Crônica BCR-ABL Positiva , Humanos , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Antineoplásicos/farmacologia , Sirtuína 1/genética , Sirtuína 1/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Células K562 , Apoptose , Proteína 12 Relacionada à Autofagia , Fator de Iniciação 4A em Eucariotos/farmacologia , RNA Helicases DEAD-box
5.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-341155

RESUMO

This study examined the expressions of human serum tissue factor (TF) and tissue factor pathway inhibitor (TFPI) in patients with acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation (allo-HSCT) and their clinical significance. The serum TFand TFPI levels were detected by ELISA in 28 allo-HSCT recipients before and after the transplantation and the changes of TF and TFPI levels were dynamically monitored at different phases of the disease. No significant differences in the serum TF and TFPI levels were found in allo-HSCT recipients in the absence of aGVHD or with grade Ⅰ aGVHD before and after the transplantation. The levels of serum TF and TFPI were substantially increased in the patients with grade Ⅱ aGVHD at the peak of aGVHD (P<0.05) and they were even higher in the patients with grade Ⅲ-Ⅳ aGVHD (P<0.01). When the conditions became stable after treatment with immunosuppressive agents,the serum TFPI level was decreased to the baseline level (P>0.05) and the TF level was lowered but still higher than the baseline level (P<0.05). It was concluded that the levels of serum TF and TFPI were increased significantly in the patients with grade Ⅱ-Ⅳ aGVHD after allo-HSCT and decreased markedly after the treatment. Monitoring the levels of serum TF and TFPI in the patients with allo-HSCT is important to predict the occurrence,outcome and prognosis of aGVHD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA