Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.136
Filtrar
1.
mSystems ; : e0101624, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39329483

RESUMO

Crustaceans are important food sources worldwide and possess significant ecological status in the marine ecosystem. However, our understanding of the diversity and evolution of RNA viruses in crustaceans, especially in economic crustaceans, is still limited. Here, 106 batches of economic crustaceans including 13 species were collected from 24 locations in China during 2016-2021. We identified 90 RNA viruses, 69 of which were divergent from the known viruses. Viral transcripts were assigned to 18 different viral families/clades and three unclassified groups. Among the identified viruses, five were double-stranded RNA viruses, 74 were positive-sense single-stranded RNA (+ssRNA) viruses, nine were negative-sense single-stranded RNA (-ssRNA) viruses, and two belonged to an unclassified RNA virus group. Phylogenetic analyses showed that crustacean viruses were often clustered with viruses identified from invertebrates. Remarkably, most crustacean viruses were closely related to those from different host species along the same food chain or ecological aquatic niche. In addition, the genome structures of the newly discovered picornaviruses exhibited remarkable diversity. Our study significantly expands the diversity of viruses in important economic crustaceans and provides essential data for the risk assessment of the pathogens spreading in the global aquaculture industry. IMPORTANCE: The study delves into the largely uncharted territory of RNA viruses in crustaceans, which are not only vital for global food supply but also play a pivotal role in marine ecosystems. Focusing on economic crustaceans, the research uncovers 90 RNA viruses, with 69 being potentially new to science, highlighting the vast unknown viral diversity within these marine organisms. The findings reveal that these viruses are often related to those found in other invertebrates and tend to share close relationships with viruses from species within the same food web or habitat. This suggests that viruses may move between different marine species more frequently than previously thought. The discovery of such a wide variety of viruses, particularly the diverse genome structures of newly identified picornaviruses, is a significant leap forward in understanding the crustacean virology. This knowledge is crucial for managing disease risks in aquaculture and maintaining the balance of marine ecosystems.

2.
Sensors (Basel) ; 24(18)2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39338694

RESUMO

Wearable sensor-based human activity recognition (HAR) methods hold considerable promise for upper-level control in exoskeleton systems. However, such methods tend to overlook the critical role of data quality and still encounter challenges in cross-subject adaptation. To address this, we propose an active learning framework that integrates the relation network architecture with data sampling techniques. Initially, target data are used to fine tune two auxiliary classifiers of the pre-trained model, thereby establishing subject-specific classification boundaries. Subsequently, we assess the significance of the target data based on classifier discrepancy and partition the data into sample and template sets. Finally, the sampled data and a category clustering algorithm are employed to tune model parameters and optimize template data distribution, respectively. This approach facilitates the adaptation of the model to the target subject, enhancing both accuracy and generalizability. To evaluate the effectiveness of the proposed adaptation framework, we conducted evaluation experiments on a public dataset and a self-constructed electromyography (EMG) dataset. Experimental results demonstrate that our method outperforms the compared methods across all three statistical metrics. Furthermore, ablation experiments highlight the necessity of data screening. Our work underscores the practical feasibility of implementing user-independent HAR methods in exoskeleton control systems.


Assuntos
Algoritmos , Eletromiografia , Dispositivos Eletrônicos Vestíveis , Humanos , Eletromiografia/métodos , Atividades Humanas , Masculino , Adulto , Aprendizado de Máquina Supervisionado , Aprendizado de Máquina
3.
Inorg Chem ; 63(39): 18276-18284, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39295474

RESUMO

Optimizing the structure and tuning the optical properties in low-dimensional organic-inorganic halide perovskites are crucial to practical applications for stable solid-state lighting. Herein, we performed high-pressure investigations on one-dimensional (1D) postperovskite (TDMP)PbBr4 (TDMP = trans-2,5-dimethylpiperaziniium), and structure and optical properties under pressure are studied. (TDMP)PbBr4 exhibits color tunable emission from cool white light to yellow orange as the pressure increases from atmospheric pressure to 20.0 GPa. It was found that high pressure would facilitate trapping the free exciton (free exciton) to form a self-trapped exciton (STE) state due to increased electron-phonon interaction, thus enhancing STE emission in the pressure range of 4.0-7.0 GPa. At above 7.0 GPa, the STE emission is quenched, which is due to the phonon-assisted nonradiative relaxation. Meanwhile, (TDMP)PbBr4 displays reversible piezochromism from colorless to yellow under pressure as a result of the compound undergoing a reversible structural transformation. This work provides an insightful perspective on revealing the relationship between structure and optical properties of 1D postperovskites under high pressure.

4.
Materials (Basel) ; 17(17)2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39274780

RESUMO

In order to further enhance the erosion resistance of cement concrete pavement materials, this study constructed an apparent rough hydrophobic structure layer by spraying a micro-nano substrate coating on the surface layer of the cement concrete pavement. This was followed by a secondary spray of a hydroxy-silicone oil-modified epoxy resin and a low surface energy-modified substance paste, which combine to form a superhydrophobic coating. The hydrophobic mechanism of the coating was then analysed. Firstly, the effects of different types and ratios of micro-nano substrates on the apparent morphology and hydrophobic performance of the rough structure layer were explored through contact angle testing and scanning electron microscopy (SEM). Subsequently, Fourier transform infrared spectroscopy and permeation gel chromatography were employed to ascertain the optimal modification ratio, temperature, and reaction mechanism of hydroxy-silicone oil with E51 type epoxy resin. Additionally, the mechanical properties of the modified epoxy resin-low surface energy-modified substance paste were evaluated through tensile tests. Finally, the erosion resistance of the superhydrophobic coating was tested under a range of conditions, including acidic, alkaline, de-icer, UV ageing, freeze-thaw cycles and wet wheel wear. The results demonstrate that relying solely on the rough structure of the concrete surface makes it challenging to achieve superhydrophobic performance. A rough structure layer constructed with diamond micropowder and hydrophobic nano-silica is less prone to cracking and can form more "air chamber" structures on the surface, with better wear resistance and hydrophobic performance. The ring-opening reaction products that occur during the preparation of modified epoxy resin will severely affect its mechanical strength after curing. Controlling the reaction temperature and reactant ratio can effectively push the modification reaction of epoxy resin through dehydration condensation, which produces more grafted polymer. It is noteworthy that the grafted polymer content is positively correlated with the hydrophobicity of the modified epoxy resin. The superhydrophobic coating exhibited enhanced erosion resistance (based on hydrochloric acid), UV ageing resistance, abrasion resistance, and freeze-thaw damage resistance to de-icers by 19.41%, 18.36%, 43.17% and 87.47%, respectively, in comparison to the conventional silane-based surface treatment.

5.
Medicine (Baltimore) ; 103(38): e39501, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39312313

RESUMO

High-throughput immune repertoire (IR) sequencing provides direct insight into the diversity of B cell receptor (BCR) and T cell receptor (TCR), with great potential to revolutionize the diagnosis, monitoring, and prevention of immune system-related disorders. In this study, multiplex PCR was applied to amplify the complementarity-determining regions of BCR and TCR, followed by comprehensive analysis by high-throughput sequencing. We compare the TCR (BCR) of bone marrow fluid (BMF) and peripheral blood (PB) samples from 17 patients in the Epstein-Barr and immunodeficiency groups, respectively. Our study shows that the diversity of the IR of blood samples is very similar to that of bone marrow samples statistically. However, the distributions of the monoclonal genes are significantly different in these 2 samples of most patients. This suggests that the BMFs can be replaced by the PB samples in diversity detection of IR to monitor the immune status of the body, while the detection of the BMFs is unreplaceable when the monoclonal change occurs. We used high-throughput sequencing to assess the TCR and BCR of the patients and provide a basis for the clinical analysis of PB and bone marrow samples and selection of disease diagnosis and monitoring methods.


Assuntos
Medula Óssea , Infecções por Vírus Epstein-Barr , Sequenciamento de Nucleotídeos em Larga Escala , Receptores de Antígenos de Linfócitos T , Humanos , Estudos Retrospectivos , Infecções por Vírus Epstein-Barr/imunologia , Masculino , Feminino , Medula Óssea/imunologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos B/imunologia , Criança , Adulto , Adolescente , Síndromes de Imunodeficiência/imunologia , Síndromes de Imunodeficiência/genética , Pré-Escolar , Pessoa de Meia-Idade , Adulto Jovem
6.
BMC Complement Med Ther ; 24(1): 339, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39304871

RESUMO

BACKGROUND: Gegen Qinlian Decoction (GQD) is a classical traditional Chinese medicine (TCM) formula primarily utilized for treating gut disorders. GQD showed therapeutic effects on several diseases in clinical and animal studies by targeting gut microbes. Our recent studies also found that GQD efficiently alleviated anxiety in methamphetamine-withdrawn mice via regulating gut microbiome and metabolism. Given that various studies have indicated the link between the gut microbiome and the development of depression, here we endeavor to explore whether GQD can manage depression disorders by targeting the gut microbiome. METHODS AND MATERIALS: The depression-like model was induced in rats through chronic unpredictable mild stress (CUMS) and the depression levels were determined using the sucrose preference test (SPT). To address the depression-like behavior in rats, oral administration of GQD was employed. The colon microbiome and metabolite patterns were determined by 16s rRNA sequencing and untargeted metabolomics, respectively. RESULTS: We found 6 weeks of CUMS can induce depression-like behavior in rats and 4 weeks of GQD treatment can significantly alleviate the depression-like behavior. GQD treatment can also ameliorate the histological lesions in the colon of CUMS rats. Then, CUMS increased the abundance of gut microbes, while GQD treatment can restore it to a lower level. We further discovered that the abundances of 19 bacteria at the genus level were changed with CUMS treatment, among which the abundances of Ruminococcus, Lachnoclostridium, Pygmaiobacter, Bacteroides, Pseudomonas, and Pseudomonas Family_XIII_AD3011_group were stored by GQD treatment. Besides, we identified the levels of 36 colon metabolites were changed with CUMS treatment, among which the levels of Fasciculic acid B, Spermine, Fludrocortisone acetate, alpha-Ketoglutaric acid, 2-Oxoglutaric acid, N'-(benzoyloxy)-2-(2,2-dichlorocyclopropyl) ethanimidamide, N6-Succinyl Adenosine Oleanolic acid, KQH, Ergosta-5,7,9(11),22-Tetraen-3-beta-Ol, Gentisic acid, 4-Hydroxyretinoic Acid, FAHFA (3:0/16:0), Leucine-enkephalin and N-lactoyl-phenylalanine can be restored by GQD treatment. CONCLUSION: Our findings provide evidence supporting the therapeutic efficacy of GQD in alleviating depression-like behavior in CUMS rats, potentially being targeted on colon bacteria (especially the abundance of Ruminococcus and Bacteroides) and metabolites (especially the level of Oleanolic acid).


Assuntos
Depressão , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Ratos Sprague-Dawley , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Ratos , Medicamentos de Ervas Chinesas/farmacologia , Masculino , Depressão/tratamento farmacológico , Estresse Psicológico/tratamento farmacológico , Comportamento Animal/efeitos dos fármacos
7.
Biomed Opt Express ; 15(9): 5229-5237, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39296400

RESUMO

The early stage of dental caries, i.e. demineralization, has always been a topic of concern to dentists. Understanding the essential mechanism of its occurrence is of great significance for the prevention and treatment of dental caries. However, owing to limitations in resolution and the detection capabilities of diagnostic tools, the study of enamel demineralization has always been a challenge. Terahertz (THz) technology, especially the combination of scanning near-field optical microscopy (s-SNOM) and THz time-domain spectroscopy (TDS), due to its nanoscale resolution, has shown great advantages in the field of biological imaging. Here, a THz s-SNOM system is used to perform near-field imaging of enamel before and after demineralization at the nanoscale. It can be found that near-field signals decrease significantly after demineralization. This is due to the changes of the crystal lattice and the transfer of mineral ions during demineralization, which leads to a decrease in the permittivity of the enamel. The novel approach in this study reveals the essence of demineralization and lays the groundwork for additional research and potential interventions.

8.
Adv Mater ; : e2411004, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39300904

RESUMO

Aqueous Zn battery is promising for grid-level energy storage due to its high safety and low cost, but dendrite growth and side reactions at the Zn metal anode hinder its development. Designing Zn with (002) orientation improves the stability of the Zn anode, yet grain boundaries remain susceptible to corrosion and dendrite growth. Addressing these intergranular issues is crucial for enhancing the electrochemical performance of (002)-textured Zn. Here, a strategy based on grain boundary wetting to fill intergranular regions and mitigate these issues is reported. By systematically investigating boundary fillers and filling conditions, In metal is chosen as the filler, and one-step annealing is used to synergistically convert commercial Zn foils into single (002)-textured Zn while filling In into the boundaries. The inter-crystalline-modified (002)-textured Zn (IM(002) Zn) effectively inhibits corrosion and dendrite growth, resulting in excellent stability in batteries. This work offers new insights into Zn anode protection and the development of high-energy Zn batteries.

9.
Eur J Cancer Prev ; 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39302841

RESUMO

To investigate the effects of antibiotic exposure on the prognosis of patients with advanced metastatic non-small cell lung cancer (m-NSCLC) who received immune checkpoint inhibitors (ICIs). This study retrospectively included 199 patients diagnosed with m-NSCLC in Shandong Cancer Hospital and Institute from December 2017 to October 2021, all patients received ICIs for the first time. The basic clinical characteristics of patients before the first treatment of ICIs, whether antibiotics were used during treatment, progression-free survival (PFS), and overall survival (OS) were collected. The survival among different groups was compared by the Kaplan-Meier method. The median follow-up time of m-NSCLC patients was 33.79 months, mPFS was 11.67 months, and mOS was 21.55 months. Univariate analysis showed that antibiotic use, radiotherapy, and targeted drug resistance influenced PFS and OS (P < 0.05). Multivariate analysis showed that antibiotic use, radiotherapy, and targeted resistance remained independent factors of PFS, and targeted resistance was an independent factor of OS (P < 0.05). Subgroup analysis found that antibiotic use within 30 days before and after immunotherapy could decrease the PFS and OS (P < 0.05). Kaplan-Meier analysis showed that patients without radiotherapy had shorter PFS (mPFS, 12.89 vs. 8.13 months; P = 0.0258) and OS (mOS, 26.94 vs. 16.43 months; P = 0.0465). The mPFS (16.17 vs. 9.19 months; P = 0.0151) and mOS (27.27 vs. 18.65 months; P = 0.0437) of patients in the antibiotic group were shorter. Patients in the targeted drug-resistant group had shorter PFS (mPFS, 40.66 vs. 7.77 months, P < 0.001) and OS (mOS, 41.98 vs. 16.89 months, P < 0.001) compared with patients who did not receive targeted treatment. Antibiotics and radiation therapy are associated with the prognosis of m-NSCLC who are newly treated with ICIs. Effectively reducing antibiotic use in 1 month before and after ICIs treatment may help improve the immunotherapy efficacy of patients with m-NSCLC.

10.
Biomater Sci ; 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39238274

RESUMO

Rapid and accurate detection of 7-methylguanine (m7Gua), a biomarker reflecting the degree of DNA methylation that occurs before or in the early stage of cancer, is of particular significance but remains a great challenge. Herein, a luminescent lanthanide-based covalent organic framework (Ln-COF) probe, namely DPA/Eu@ETTA-DHTA, is designed for the first time for the identification of m7Gua by assembling pyridine-2,6-dicarboxylic acid (DPA) as both an energy donor and a recognition molecule and Eu3+ ions as signal reporters into a stable COF matrix with high porosity and available binding sites. Significantly, the characteristic luminescence of Eu3+ ions can be turned on by the grafted DPA in the COF probe and effectively quenched by the addition of m7Gua via a competitive absorption process, thus achieving the sensing of m7Gua. Such a Ln-COF-based fluorescent platform presents high selectivity and a rapid response (<1 min) to m7Gua with a low detection limit (µM level) even in the presence of the main coexisting species in urine, allowing it to serve as a potentially practical probe for point-of-care monitoring of the level of m7Gua in human urine specimens. This study provides a convenient, time-saving, and economical approach for visual detection of m7Gua, and opens up new perspectives for the design of a luminescent COF-based probe for DNA methylation evaluation in diagnostics.

11.
Nanoscale ; 16(33): 15793-15800, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39118536

RESUMO

In the advancement of spintronic devices, spin valves play a critical role, especially in the sensor and information industries. The emergence of two-dimensional (2D) van der Waals (vdW) magnetic materials has opened up new possibilities for the development of high-performance spin-valve devices. However, the Curie temperature (TC) of most 2D vdW ferromagnets falls below room temperature, resulting in a scarcity of room-temperature spin-valve devices. In this study, we have prepared spin-valve devices without spacer layers based on Fe3GaTe2 vdW homojunctions and observed notable two-state magnetoresistance (MR) from 2 K to room temperature. A maximum MR of 50% surpasses some heterojunctions with spacer-layer structures and it remains 0.6% at room temperature. Furthermore, spin-valve devices exhibit favorable ohmic contact and low operating current as low as 10 nA. These findings demonstrate the enormous potential of Fe3GaTe2-based room-temperature devices and the simplified two-layer structure shows significant prospect in the context of the ongoing trend towards miniaturization of contemporary devices.

12.
ACS Nano ; 18(35): 23912-23940, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39168863

RESUMO

The natural water cycle on the Earth carries an enormous amount of energy as thirty-five percent of solar energy reaching the Earth's surface goes into water. However, only a very marginal part of the contained energy, mostly kinetic energy of large volume bulk water, is harvested by hydroelectric power plants. Natural processes in the water cycle, such as rainfall, water evaporation, and moisture adsorption, are widespread but have remained underexploited in the past due to the lack of appropriate technologies. In the past decade, the emergence of hydrovoltaic technology has provided ever-increasing opportunities to extend the technical capability for energy harvesting from the water cycle. Featuring electricity generation from mechanical-electric coupling at the water-solid interface, hydrovoltaic technology embraces almost all dynamic processes associated with water, including raining, waving, flowing, evaporating, and moisture adsorbing. This versatility in dealing with various forms of water and associated energy renders hydrovoltaic technology a solution for fossil fuel-caused environmental problems. Here, we review the current progress of hydrovoltaic energy harvesting from water motion, evaporation, and ambient moisture. Device configuration, energy conversion mechanism mediated by mechanical-electric coupling at various water-solid interfaces, as well as materials selection and functionalization are discussed. Useful strategies guided by established mechanisms for device optimization are then covered. Finally, we provide an outlook on this emerging field and outline the challenges of improving output performance toward potential practical applications.

13.
J Appl Stat ; 51(11): 2139-2156, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39157272

RESUMO

The transformation model with partly interval-censored data offers a highly flexible modeling framework that can simultaneously support multiple common survival models and a wide variety of censored data types. However, the real data may contain unexplained heterogeneity that cannot be entirely explained by covariates and may be brought on by a variety of unmeasured regional characteristics. Due to this, we introduce the conditionally autoregressive prior into the transformation model with partly interval-censored data and take the spatial frailty into account. An efficient Markov chain Monte Carlo method is proposed to handle the posterior sampling and model inference. The approach is simple to use and does not include any challenging Metropolis steps owing to four-stage data augmentation. Through several simulations, the suggested method's empirical performance is assessed and then the method is used in a leukemia study.

14.
Mater Horiz ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39139143

RESUMO

Due to the success of halide perovskites in the photovoltaic field, halide perovskite-derived semiconductors have also been widely studied for optoelectronic applications. However, the photovoltaic performance of these perovskite derivatives still lags significantly behind their perovskite counterparts, mainly due to deficiencies at the B-site or X-site of the derivatives, which disrupt the connectivity of the key [BX6] octahedra units. Herein, we developed a class of antiperovskite-derived materials with the formula , achieved by splitting the A anion, originally at the corner site of the cubic antiperovskite structure, into three edge-centered sites. This structural transformation maintains the three-dimensional octahedral framework. The thermodynamic stability, dynamical stability, and band gaps of 80 compounds were calculated using first-principles calculations. Based on criteria including stability and electronic properties, we identified 9 promising antiperovskite derivatives for further evaluation of their photovoltaic performance. Notably, the calculated theoretical maximum efficiencies of Ba3BiI3, Ba3SbI3, and Ba3BiBr3 all exceed 24.5%, which is comparable to that of CH3NH3PbI3 solar cells. Interpretable machine learning analysis was further carried out to identify critical physical descriptors influencing thermodynamic stability and band gap. Our work provides a novel approach for designing high performance perovskite-type structure-inspired semiconductors with potential for optoelectronic applications.

15.
Chem Sci ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39149215

RESUMO

The issue of polyiodide crossover at an iodine cathode significantly diminishes the efficiency and practicality of aqueous zinc-iodine flow batteries (ZIFBs). To address this challenge, we have introduced a localized high iodine concentration (LHIC) coating layer onto a porous polyolefin membrane, which featured strong chemical adsorption by exploiting adduct chemistry between the iodine species and a series of low-cost oxides, e.g., MgO, CeO2, ZrO2, TiO2, and Al2O3. Leveraging the LHIC based on the potent iodine adsorption capability, the as-fabricated MgO-LHIC composite membrane effectively mitigates iodine crossover via Donnan repulsion and concentration gradient effects. At a high volumetric capacity of 17.8 Ah L-1, ZIFBs utilizing a MgO-LHIC composite membrane exhibited improved coulombic efficiency (CE) and energy efficiency (EE) of 96.3% and 68.6%, respectively, along with long-term cycling stability of 170 cycles. These results significantly outperform those of ZIFBs based on a blank polyolefin membrane (78.2%/61.9% after 60 cycles) and the widely used commercial Nafion N117 (67.8%/53.0% after 23 cycles). Even under high-temperature conditions (60 °C), the LHIC-based battery still demonstrates superior CE/EE of 95.1%/67.5% compared to those of the blank polyolefin membrane (CE/EE: 61.1%/46.8%). Our pioneering research showcases enormous prospects for developing high-efficiency and low-cost composite membranes based on adduct chemistry for large-scale energy storage applications.

16.
Virus Evol ; 10(1): veae059, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39119135

RESUMO

RNA viruses are characterized by a broad host range and high levels of genetic diversity. Despite a recent expansion in the known virosphere following metagenomic sequencing, our knowledge of the species rank genetic diversity of RNA viruses, and how often they are misassigned and misclassified, is limited. We performed a clustering analysis of 7801 RNA-directed RNA polymerase (RdRp) sequences representing 1897 established RNA virus species. From this, we identified substantial genetic divergence within some virus species and inconsistency in RNA virus assignment between the GenBank database and The International Committee on Taxonomy of Viruses (ICTV). In particular, 27.57% virus species comprised multiple virus operational taxonomic units (vOTUs), including Alphainfluenzavirus influenzae, Mammarenavirus lassaense, Apple stem pitting virus, and Rotavirus A, with each having over 100 vOTUs. In addition, the distribution of average amino acid identity between vOTUs within single assigned species showed a relatively low threshold: <90% and sometimes <50%. However, when only exemplar sequences from virus species were analyzed, 1889 of the ICTV-designated RNA virus species (99.58%) were clustered into a single vOTU. Clustering of the RdRp sequences from different virus species also revealed that 17 vOTUs contained two distinct virus species. These potential misassignments were confirmed by phylogenetic analysis. A further analysis of average nucleotide identity (ANI) values ranging from 70% to 97.5% revealed that at an ANI of 82.5%, 1559 (82.18%) of the 1897 virus species could be correctly clustered into one single vOTU. However, at ANI values >82.5%, an increasing number of species were clustered into two or more vOTUs. In sum, we have identified some inconsistency and misassignment of the RNA virus species based on the analysis of RdRp sequences alone, which has important implications for the development of an automated RNA virus classification system.

17.
ACS Appl Mater Interfaces ; 16(34): 45754-45762, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39150396

RESUMO

Using the on-the-fly machine learning force field, simulations were performed to study the atomic structure evolution of the liquid-Al/solid-TiB2 interface with two different terminations, aiming to deepen the understanding of the mechanism of TiB2 as nucleating particles in an aluminum alloy. We conducted simulations using MLFF for up to 100 ps, enabling us to observe the interfacial properties from a deeper and more comprehensive perspective. The nucleation potential of TiB2 particles is determined by the formation of various ordered structures at the interface, which is significantly influenced by the termination of the TiB2 (0001) surface. The evolution of the interface during heterogeneous nucleation processes with different terminations is described using structural information and dynamic characteristics. The Ti-terminated surface is more prone to forming quasi-solid regions compared to the B-termination. Analysis of mean square displacement and vibrational density of states indicates that the liquid layer at the Ti-terminated interface is closer in characteristics to a solid compared to the B-terminated interface. We also found that on the TiB2 (0001) surface different terminations give rise to distinct ordered structures at the interfaces, which is ascribed to their different diffusion abilities.

18.
Int J Biol Macromol ; 279(Pt 1): 135100, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39197632

RESUMO

Bacterial infection is the primary cause of delayed wound healing. Infected wounds suffer from a series of harmful factors in the harsh wound microenvironment (WME), greatly damaging their potential for tissue regeneration. Herein, a novel probiotic biofilm-based antibacterial strategy is proposed through experimentation. Firstly, a series of coaxial polycaprolactone (PCL) / silk fibroin (SF) nanofiber films (termed as PSN-n, n = 0.5, 1.0, 1.5, and 2.0, respectively) are prepared by coaxial electrospinning and their physiochemical properties are comprehensively characterized. Afterward, the PSN-1.5 is selected and co-cultured with L. paracasei to allow the formation of probiotic biofilm. The probiotic biofilm-loaded PSN-1.5 nanofiber film (termed as PSNL-1.5) exhibits relatively good broad-spectrum antibacterial activity, biocompatibility, and enhanced pro-regenerative capability by immunoregulation of M2 macrophage. A wound healing assay is performed using an S. aureus-infected skin defect model. The application effect of PSNL-1.5 is significantly better than that of a commercial nano­silver burn & scald dressing (Anson®), revealing huge potential for clinical translation. This study is of significant novelty in demonstrating the antibacterial and pro-regenerative abilities of probiotic biofilms. The product of this study will be extensively used for treating infected wounds or other wounds.

19.
Leuk Lymphoma ; : 1-10, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38972063

RESUMO

This retrospective analysis evaluated the use of anti-thymocyte globulin (ATG) with or without post-transplantation cyclophosphamide (PTCy) for graft-versus-host disease (GvHD) prophylaxis in children with acute leukemia undergoing hematopoietic stem cell transplantation (HSCT). The study included 57 children, with 35 in the ATG-PTCy group and 22 in the ATG group. While overall incidence of acute and chronic GvHD did not differ significantly between groups, the ATG-PTCy group had lower rates of grade II-IV acute GvHD (p = 0.013) and moderate-to-severe chronic GvHD (p = 0.001) compared to the ATG group. Importantly, ATG-PTCy significantly improved GvHD/relapse-free survival (GRFS) compared to ATG (65.71% vs. 36.63%; p = 0.003). There were no differences in engraftment, infection rates, immune reconstitution, overall survival, leukemia-free survival, relapse rate, or non-relapse mortality between the two groups. Combining ATG with PTCy may reduce moderate-to-severe GvHD and improve GRFS in children undergoing HSCT for acute leukemia.

20.
BMC Genomics ; 25(1): 683, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982385

RESUMO

BACKGROUND: The escalating impacts of global warming intensify the detrimental effects of heat stress on crop growth and yield. Among the earliest and most vulnerable sites of damage is Photosystem II (PSII). Plants exposed to recurring high temperatures develop heat stress memory, a phenomenon that enables them to retain information from previous stress events to better cope with subsequent one. Understanding the components and regulatory networks associated with heat stress memory is crucial for the development of heat-resistant crops. RESULTS: Physiological assays revealed that heat priming (HP) enabled tall fescue to possess higher Photosystem II photochemical activity when subjected to trigger stress. To investigate the underlying mechanisms of heat stress memory, we performed comparative proteomic analyses on tall fescue leaves at S0 (control), R4 (primed), and S5 (triggering), using an integrated approach of Tandem Mass Tag (TMT) labeling and Liquid Chromatography-Mass Spectrometry. A total of 3,851 proteins were detected, with quantitative information available for 3,835 proteins. Among these, we identified 1,423 differentially abundant proteins (DAPs), including 526 proteins that were classified as Heat Stress Memory Proteins (HSMPs). GO and KEGG enrichment analyses revealed that the HSMPs were primarily associated with the "autophagy" in R4 and with "PSII repair", "HSP binding", and "peptidase activity" in S5. Notably, we identified 7 chloroplast-localized HSMPs (HSP21, DJC77, EGY3, LHCA4, LQY1, PSBR and DEGP8, R4/S0 > 1.2, S5/S0 > 1.2), which were considered to be effectors linked to PSII heat stress memory, predominantly in cluster 4. Protein-protein interaction (PPI) analysis indicated that the ubiquitin-proteasome system, with key nodes at UPL3, RAD23b, and UCH3, might play a role in the selective retention of memory effectors in the R4 stage. Furthermore, we conducted RT-qPCR validation on 12 genes, and the results showed that in comparison to the S5 stage, the R4 stage exhibited reduced consistency between transcript and protein levels, providing additional evidence for post-transcriptional regulation in R4. CONCLUSIONS: These findings provide valuable insights into the establishment of heat stress memory under recurring high-temperature episodes and offer a conceptual framework for breeding thermotolerant crops with improved PSII functionality.


Assuntos
Resposta ao Choque Térmico , Complexo de Proteína do Fotossistema II , Proteômica , Termotolerância , Complexo de Proteína do Fotossistema II/metabolismo , Proteômica/métodos , Festuca/metabolismo , Festuca/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas , Proteoma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA