Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Biosci ; 13(1): 227, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102659

RESUMO

Various craniofacial syndromes cause skeletal malformations and are accompanied by neurological abnormalities at different levels, leading to tremendous biomedical, financial, social, and psychological burdens. Accumulating evidence highlights the importance of identifying and characterizing the genetic basis that synchronously modulates musculoskeletal and neurobehavioral development and function. Particularly, previous studies from different groups have suggested that neural EGFL-like-1 (Nell-1), a well-established osteochondrogenic inducer whose biopotency was initially identified in the craniofacial tissues, may also play a vital role in the central nervous system, particularly regarding neurological disorder pathologies. To provide first-hand behavior evidence if Nell-1 also has a role in central nervous system abnormalities, we compared the Nell-1-haploinsufficient (Nell-1+/6R) mice with their wild-type counterparts regarding their repetitive, social communication, anxiety-related, locomotor, sensory processing-related, motor coordination, and Pavlovian learning and memory behaviors, as well as their hippocampus transcriptional profile. Interestingly, Nell-1+/6R mice demonstrated core autism spectrum disorder-like deficits, which could be corrected by Risperidone, an FDA-approved anti-autism, anti-bipolar medicine. Besides, transcriptomic analyses identified 269 differential expressed genes, as well as significantly shifted alternative splicing of ubiquitin B pseudogene Gm1821, in the Nell-1+/6R mouse hippocampus, which confirmed that Nell-1 plays a role in neurodevelopment. Therefore, the current study verifies that Nell-1 regulates neurological development and function for the first time. Moreover, this study opens new avenues for understanding and treating craniofacial patients suffering from skeletal deformities and behavior, memory, and cognition difficulties by uncovering a novel bone-brain-crosstalk network. Furthermore, the transcriptomic analysis provides the first insight into deciphering the mechanism of Nell-1 in neurodevelopment.

2.
NPJ Microgravity ; 9(1): 75, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37723136

RESUMO

Microgravity-induced bone loss results in a 1% bone mineral density loss monthly and can be a mission critical factor in long-duration spaceflight. Biomolecular therapies with dual osteogenic and anti-resorptive functions are promising for treating extreme osteoporosis. We previously confirmed that NELL-like molecule-1 (NELL-1) is crucial for bone density maintenance. We further PEGylated NELL-1 (NELL-polyethylene glycol, or NELL-PEG) to increase systemic delivery half-life from 5.5 to 15.5 h. In this study, we used a bio-inert bisphosphonate (BP) moiety to chemically engineer NELL-PEG into BP-NELL-PEG and specifically target bone tissues. We found conjugation with BP improved hydroxyapatite (HA) binding and protein stability of NELL-PEG while preserving NELL-1's osteogenicity in vitro. Furthermore, BP-NELL-PEG showed superior in vivo bone specificity without observable pathology in liver, spleen, lungs, brain, heart, muscles, or ovaries of mice. Finally, we tested BP-NELL-PEG through spaceflight exposure onboard the International Space Station (ISS) at maximal animal capacity (n = 40) in a long-term (9 week) osteoporosis therapeutic study and found that BP-NELL-PEG significantly increased bone formation in flight and ground control mice without obvious adverse health effects. Our results highlight BP-NELL-PEG as a promising therapeutic to mitigate extreme bone loss from long-duration microgravity exposure and musculoskeletal degeneration on Earth, especially when resistance training is not possible due to incapacity (e.g., bone fracture, stroke).

3.
Cell Rep ; 42(5): 112299, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37080202

RESUMO

Understanding the axis of the human microbiome and physiological homeostasis is an essential task in managing deep-space-travel-associated health risks. The NASA-led Rodent Research 5 mission enabled an ancillary investigation of the gut microbiome, varying exposure to microgravity (flight) relative to ground controls in the context of previously shown bone mineral density (BMD) loss that was observed in these flight groups. We demonstrate elevated abundance of Lactobacillus murinus and Dorea sp. during microgravity exposure relative to ground control through whole-genome sequencing and 16S rRNA analyses. Specific functionally assigned gene clusters of L. murinus and Dorea sp. capable of producing metabolites, lactic acid, leucine/isoleucine, and glutathione are enriched. These metabolites are elevated in the microgravity-exposed host serum as shown by liquid chromatography-tandem mass spectrometry (LC-MS/MS) metabolomic analysis. Along with BMD loss, ELISA reveals increases in osteocalcin and reductions in tartrate-resistant acid phosphatase 5b signifying additional loss of bone homeostasis in flight.


Assuntos
Microbioma Gastrointestinal , Voo Espacial , Humanos , RNA Ribossômico 16S/genética , Cromatografia Líquida , Viagem , Espectrometria de Massas em Tandem
4.
Bioeng Transl Med ; 8(1): e10355, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36684085

RESUMO

A crucial component of the musculoskeletal system, the tendon is one of the most commonly injured tissues in the body. In severe cases, the ruptured tendon leads to permanent dysfunction. Although many efforts have been devoted to seeking a safe and efficient treatment for enhancing tendon healing, currently existing treatments have not yet achieved a major clinical improvement. Here, an injectable granular hyaluronic acid (gHA)-hydrogel is engineered to deliver fibromodulin (FMOD)-a bioactive extracellular matrix (ECM) that enhances tenocyte mobility and optimizes the surrounding ECM assembly for tendon healing. The FMOD-releasing granular HA (FMOD/gHA)-hydrogel exhibits unique characteristics that are desired for both patients and health providers, such as permitting a microinvasive application and displaying a burst-to-sustained two-phase release of FMOD, which leads to a prompt FMOD delivery followed by a constant dose-maintaining period. Importantly, the generated FMOD-releasing granular HA hydrogel significantly augmented tendon-healing in a fully-ruptured rat's Achilles tendon model histologically, mechanically, and functionally. Particularly, the breaking strength of the wounded tendon and the gait performance of treated rats returns to the same normal level as the healthy controls. In summary, a novel effective FMOD/gHA-hydrogel is developed in response to the urgent demand for promoting tendon healing.

5.
Adv Wound Care (New Rochelle) ; 12(6): 339-360, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35651274

RESUMO

Significance: Orofacial structures are indispensable for speech and eating, and impairment disrupts whole-body health through malnutrition and poor quality of life. However, due to the unique and highly specialized cell populations, tissue architecture, and healing microenvironments, regeneration in this region is challenging and inadequately addressed to date. Recent Advances: With increasing understanding of the nuanced physiology and cellular responses of orofacial soft tissue, novel scaffolds, seeded cells, and bioactive molecules were developed in the past 5 years to specifically target orofacial soft tissue regeneration, particularly for tissues primarily found within the orofacial region such as oral mucosa, taste buds, salivary glands, and masseter muscles. Critical Issues: Due to the tightly packed and complex anatomy, orofacial soft tissue injury commonly implicates multiple tissue types, and thus functional unit reconstruction in the orofacial region is more important than single tissue regeneration. Future Directions: This article reviews the up-to-date knowledge in this highly translational topic, which provides insights into novel biologically inspired and engineered strategies for regenerating orofacial component tissues and functional units.


Assuntos
Qualidade de Vida , Papilas Gustativas , Papilas Gustativas/metabolismo , Cicatrização
6.
Front Cell Dev Biol ; 10: 982199, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36147737

RESUMO

There is an unmet need for novel and efficacious therapeutics for regenerating injured articular cartilage in progressive osteoarthritis (OA) and/or trauma. Mesenchymal stem cells (MSCs) are particularly promising for their chondrogenic differentiation, local healing environment modulation, and tissue- and organism-specific activity; however, despite early in vivo success, MSCs require further investigation in highly-translatable models prior to disseminated clinical usage. Large animal models, such as canine, porcine, ruminant, and equine models, are particularly valuable for studying allogenic and xenogenic human MSCs in a human-like osteochondral microenvironment, and thus play a critical role in identifying promising approaches for subsequent clinical investigation. In this mini-review, we focus on [1] considerations for MSC-harnessing studies in each large animal model, [2] source tissues and organisms of MSCs for large animal studies, and [3] tissue engineering strategies for optimizing MSC-based cartilage regeneration in large animal models, with a focus on research published within the last 5 years. We also highlight the dearth of standard assessments and protocols regarding several crucial aspects of MSC-harnessing cartilage regeneration in large animal models, and call for further research to maximize the translatability of future MSC findings.

7.
Biomaterials ; 287: 121609, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35839586

RESUMO

Recent investigations into mechanisms behind the development of osteoporosis suggest that suppressing PPARγ-mediated adipogenesis can improve bone formation and bone mineral density. In this study, we investigated a co-treatment strategy to enhance bone formation by combining NELL-1, an osteogenic molecule that has been extensively studied for its potential use as a therapeutic for osteoporosis, with two methods of PPARγ suppression. First, we suppressed PPARγ genetically using lentiviral PPARγ-shRNA in immunocompromised mice for a proof of concept. Second, we used a PPARγ antagonist to suppress PPARγ pharmacologically in immunocompetent senile osteopenic mice for clinical transability. We found that the co-treatment strategy significantly increased bone formation, increased the proliferation stage cell population, decreased late apoptosis of primary mouse BMSCs, and increased osteogenic marker mRNA levels in comparison to the single agent treatment groups. The addition of PPARγ suppression to NELL-1 therapy enhanced NELL-1's effects on bone formation by upregulating anabolic processes without altering NELL-1's inhibitory effects on osteoclastic and adipogenic activities. Our findings suggest that combining PPARγ suppression with therapeutic NELL-1 may be a viable method that can be further developed as a novel strategy to reverse bone loss and decrease marrow adiposity in age-related osteoporosis.

8.
Skelet Muscle ; 12(1): 11, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35642060

RESUMO

BACKGROUND: As the interest in manned spaceflight increases, so does the requirement to understand the transcriptomic mechanisms that underlay the detrimental physiological adaptations of skeletal muscle to microgravity. While microgravity-induced differential gene expression (DGE) has been extensively investigated, the contribution of differential alternative splicing (DAS) to the plasticity and functional status of the skeletal muscle transcriptome has not been studied in an animal model. Therefore, by evaluating both DGE and DAS across spaceflight, we set out to provide the first comprehensive characterization of the transcriptomic landscape of skeletal muscle during exposure to microgravity. METHODS: RNA-sequencing, immunohistochemistry, and morphological analyses were conducted utilizing total RNA and tissue sections isolated from the gastrocnemius and quadriceps muscles of 30-week-old female BALB/c mice exposed to microgravity or ground control conditions for 9 weeks. RESULTS: In response to microgravity, the skeletal muscle transcriptome was remodeled via both DGE and DAS. Importantly, while DGE showed variable gene network enrichment, DAS was enriched in structural and functional gene networks of skeletal muscle, resulting in the expression of alternatively spliced transcript isoforms that have been associated with the physiological changes to skeletal muscle in microgravity, including muscle atrophy and altered fiber type function. Finally, RNA-binding proteins, which are required for regulation of pre-mRNA splicing, were themselves differentially spliced but not differentially expressed, an upstream event that is speculated to account for the downstream splicing changes identified in target skeletal muscle genes. CONCLUSIONS: Our work serves as the first investigation of coordinate changes in DGE and DAS in large limb muscles across spaceflight. It opens up a new opportunity to understand (i) the molecular mechanisms by which splice variants of skeletal muscle genes regulate the physiological adaptations of skeletal muscle to microgravity and (ii) how small molecule splicing regulator therapies might thwart muscle atrophy and alterations to fiber type function during prolonged spaceflight.


Assuntos
Voo Espacial , Transcriptoma , Processamento Alternativo , Animais , Feminino , Camundongos , Músculo Esquelético/metabolismo , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , RNA/metabolismo
9.
Adv Wound Care (New Rochelle) ; 11(4): 202-214, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34978952

RESUMO

Significance: Tendon injury possesses a high morbidity rate and is difficult to achieve a satisfying prognosis with currently available treatment strategies. Current approaches used for tendon healing always lead to the formation of fibrovascular scar tissue, which significantly compromises the biomechanics of the healed tendon. Moreover, the related functional deficiency deteriorates over time with an increased injury recurrence risk. Small leucine-rich proteoglycans (SLRPs) link and interact with collagen fibrils to regulate tendon structure and biomechanics, which can provide a new and promising method in the field of tendon injury management. Recent Advances: The effect of SLRPs on tendon development has been extensively investigated. SLRP deficiency impairs tendon collagen fibril structure and biomechanic properties, while administration of SLRPs generally benefits tendon wound healing and regains better mechanical properties. Critical Issues: Current knowledge on the role of SLRPs in tendon development and regeneration mostly comes from uninjured knockout mice, and mainly focuses on the morphology description of collagen fibril profile and mechanical properties. Little is known about the regulatory mechanism on the molecular level. Future Directions: This article reviews the current knowledge in this highly translational topic and provides an evidence-based conclusion, thereby encouraging in-depth investigations of SLRPs in tendons and the development of SLRP-based treatments for desired tendon healing.


Assuntos
Proteoglicanos Pequenos Ricos em Leucina , Traumatismos dos Tendões , Animais , Biglicano , Decorina , Camundongos , Tendões , Cicatrização
10.
Am J Pathol ; 192(3): 395-405, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34890556

RESUMO

Neural epidermal growth factor-like (EGFL)-like protein (NELL)-1 is a potent and key osteogenic factor in the development and regeneration of skeletal tissues. Intriguingly, accumulative data from genome-wide association studies (GWASs) have started unveiling potential broader roles of NELL-1 beyond its functions in bone and cartilage. With exploration of the genetic variants of the entire genome in large-scale disease cohorts, GWASs have been used for establishing the connection between specific single-nucleotide polymorphisms of NELL1, in addition to osteoporosis, metabolic diseases, inflammatory conditions, neuropsychiatric diseases, neurodegenerative disorders, and malignant tumors. This review summarizes the findings from GWASs on the manifestation, significance level, implications on function, and correlation of specific NELL1 single-nucleotide polymorphisms in various disorders in humans. By offering a unique and comprehensive correlation between genetic variants and plausible functions of NELL1 in GWASs, this review illustrates the wide range of potential effects of a single gene on the pathogenesis of multiple disorders in humans.


Assuntos
Proteínas de Ligação ao Cálcio , Estudo de Associação Genômica Ampla , Osteoporose , Humanos , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Cartilagem , Osteogênese , Polimorfismo de Nucleotídeo Único
11.
Int J Mol Sci ; 22(23)2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34884839

RESUMO

Skeletal class II and III malocclusions are craniofacial disorders that negatively impact people's quality of life worldwide. Unfortunately, the growth patterns of skeletal malocclusions and their clinical correction prognoses are difficult to predict largely due to lack of knowledge of their precise etiology. Inspired by the strong inheritance pattern of a specific type of skeletal malocclusion, previous genome-wide association studies (GWAS) were reanalyzed, resulting in the identification of 19 skeletal class II malocclusion-associated and 53 skeletal class III malocclusion-associated genes. Functional enrichment of these genes created a signal pathway atlas in which most of the genes were associated with bone and cartilage growth and development, as expected, while some were characterized by functions related to skeletal muscle maturation and construction. Interestingly, several genes and enriched pathways are involved in both skeletal class II and III malocclusions, indicating the key regulatory effects of these genes and pathways in craniofacial development. There is no doubt that further investigation is necessary to validate these recognized genes' and pathways' specific function(s) related to maxillary and mandibular development. In summary, this systematic review provides initial insight on developing novel gene-based treatment strategies for skeletal malocclusions and paves the path for precision medicine where dental care providers can make an accurate prediction of the craniofacial growth of an individual patient based on his/her genetic profile.


Assuntos
Má Oclusão/metabolismo , Músculo Esquelético/metabolismo , Estudo de Associação Genômica Ampla , Humanos , Má Oclusão/genética , Má Oclusão/patologia , Mandíbula/crescimento & desenvolvimento , Mandíbula/metabolismo , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Fosfolipase C gama/genética , Fosfolipase C gama/metabolismo , Polimorfismo de Nucleotídeo Único , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Transdução de Sinais/genética
12.
Dev Biol ; 471: 97-105, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33340512

RESUMO

During neurulation, cranial neural crest cells (CNCCs) migrate long distances from the neural tube to their terminal site of differentiation. The pathway traveled by the CNCCs defines the blueprint for craniofacial construction, abnormalities of which contribute to three-quarters of human birth defects. Biophysical cues like naturally occurring electric fields (EFs) have been proposed to be one of the guiding mechanisms for CNCC migration from the neural tube to identified position in the branchial arches. Such endogenous EFs can be mimicked by applied EFs of physiological strength that has been reported to guide the migration of amphibian and avian neural crest cells (NCCs), namely galvanotaxis or electrotaxis. However, the behavior of mammalian NCCs in external EFs has not been reported. We show here that mammalian CNCCs migrate towards the anode in direct current (dc) EFs. Reversal of the field polarity reverses the directedness. The response threshold was below 30 â€‹mV/mm and the migration directedness and displacement speed increased with increase in field strength. Both CNCC line (O9-1) and primary mouse CNCCs show similar galvanotaxis behavior. Our results demonstrate for the first time that the mammalian CNCCs respond to physiological EFs by robust directional migration towards the anode in a voltage-dependent manner.


Assuntos
Região Branquial/embriologia , Diferenciação Celular , Movimento Celular , Eletricidade , Transdução de Sinais , Animais , Região Branquial/citologia , Linhagem Celular , Camundongos , Crista Neural/citologia
13.
Cleft Palate Craniofac J ; 57(8): 931-937, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32207325

RESUMO

OBJECTIVE: To measure the validity and reliability of a Chinese version of Child Oral Health Impact Profile (COHIP) and to assess oral health-related quality of life (OHRQoL) with regard to gender, age, and cleft types in Chinese children with orofacial cleft (OFC). DESIGN: A total of 120 patients with OFC (8-15 years old) and their parents were investigated with COHIP in the West China Hospital of Stomatology. Items were divided into oral symptoms, functional well-being, emotional well-being, school, and peer interaction subscales, and scores on all subscales were compared between and within groups. RESULTS: The internal consistency measured by Cronbach α was satisfactory in children's sample (0.85) and parents' sample (0.90). The correlation between children's and parents' questionnaires was moderate to weak (Pearson r = 0.34), which was also supported by moderate intraclass correlation coefficients. The OHRQoL of children differed significantly from parents on the overall COHIP, functional well-being, emotional well-being, and school subscales. Older children had poor OHRQoL, functional well-being, and emotional well-being. Girls had poor emotional well-being. Children with cleft lip and palate and cleft palate performed worse on the overall COHIP, functional well-being, and school subscales. Parents, boys, and younger children had better treatment expectations and global health perceptions. CONCLUSION: The Chinese version of COHIP is a reliable and valid tool to assess OHRQoL in Chinese children with OFC. Parents' reports could not replace children's answers but add complementary information. Children's gender, age, and cleft types should be considered in OHRQoL assessment and individual treatment plan.


Assuntos
Fenda Labial , Qualidade de Vida , Adolescente , Criança , China , Feminino , Humanos , Masculino , Saúde Bucal , Pais , Reprodutibilidade dos Testes , Inquéritos e Questionários
15.
Cell Death Differ ; 27(4): 1415-1430, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31582804

RESUMO

Upregulation of Nell-1 has been associated with craniosynostosis (CS) in humans, and validated in a mouse transgenic Nell-1 overexpression model. Global Nell-1 inactivation in mice by N-ethyl-N-nitrosourea (ENU) mutagenesis results in neonatal lethality with skeletal abnormalities including cleidocranial dysplasia (CCD)-like calvarial bone defects. This study further defines the role of Nell-1 in craniofacial skeletogenesis by investigating specific inactivation of Nell-1 in Wnt1 expressing cell lineages due to the importance of cranial neural crest cells (CNCCs) in craniofacial tissue development. Nell-1flox/flox; Wnt1-Cre (Nell-1Wnt1 KO) mice were generated for comprehensive analysis, while the relevant reporter mice were created for CNCC lineage tracing. Nell-1Wnt1 KO mice were born alive, but revealed significant frontonasal and mandibular bone defects with complete penetrance. Immunostaining demonstrated that the affected craniofacial bones exhibited decreased osteogenic and Wnt/ß-catenin markers (Osteocalcin and active-ß-catenin). Nell-1-deficient CNCCs demonstrated a significant reduction in cell proliferation and osteogenic differentiation. Active-ß-catenin levels were significantly low in Nell-1-deficient CNCCs, but were rescued along with osteogenic capacity to a level close to that of wild-type (WT) cells via exogenous Nell-1 protein. Surprisingly, 5.4% of young adult Nell-1Wnt1 KO mice developed hydrocephalus with premature ossification of the intrasphenoidal synchondrosis and widened frontal, sagittal, and coronal sutures. Furthermore, the epithelial cells of the choroid plexus and ependymal cells exhibited degenerative changes with misplaced expression of their respective markers, transthyretin and vimentin, as well as dysregulated Pit-2 expression in hydrocephalic Nell-1Wnt1 KO mice. Nell-1Wnt1 KO embryos at E9.5, 14.5, 17.5, and newborn mice did not exhibit hydrocephalic phenotypes grossly and/or histologically. Collectively, Nell-1 is a pivotal modulator of CNCCs that is essential for normal development and growth of the cranial vault and base, and mandibles partially via activating the Wnt/ß-catenin pathway. Nell-1 may also be critically involved in regulating cerebrospinal fluid homeostasis and in the pathogenesis of postnatal hydrocephalus.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Linhagem da Célula , Anormalidades Craniofaciais/patologia , Hidrocefalia/patologia , Osteocondrodisplasias/patologia , Proteína Wnt1/metabolismo , Animais , Animais Recém-Nascidos , Diferenciação Celular , Anormalidades Craniofaciais/complicações , Regulação para Baixo , Feminino , Hidrocefalia/complicações , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação/genética , Crista Neural/patologia , Osteocondrodisplasias/complicações , Osteogênese , Penetrância , Via de Sinalização Wnt
16.
Biomaterials ; 226: 119541, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31634652

RESUMO

Arthritis, an inflammatory condition that causes pain and cartilage destruction in joints, affects over 54.4 million people in the US alone. Here, for the first time, we demonstrated the emerging role of neural EGFL like 1 (NELL-1) in arthritis pathogenesis by showing that Nell-1-haploinsufficient (Nell-1+/6R) mice had accelerated and aggravated osteoarthritis (OA) progression with elevated inflammatory markers in both spontaneous primary OA and chemical-induced secondary OA models. In the chemical-induced OA model, intra-articular injection of interleukin (IL)1ß induced more severe inflammation and cartilage degradation in the knee joints of Nell-1+/6R mice than in wildtype animals. Mechanistically, in addition to its pro-chondrogenic potency, NELL-1 also effectively suppressed the expression of inflammatory cytokines and their downstream cartilage catabolic enzymes by upregulating runt-related transcription factor (RUNX)1 in mouse and human articular cartilage chondrocytes. Notably, NELL-1 significantly reduced IL1ß-stimulated inflammation and damage to articular cartilage in vivo. In particular, NELL-1 administration markedly reduced the symptoms of antalgic gait observed in IL1ß-challenged Nell-1+/6R mice. Therefore, NELL-1 is a promising pro-chondrogenic, anti-inflammatory dual-functional disease-modifying osteoarthritis drug (DMOAD) candidate for preventing and suppressing arthritis-related cartilage damage.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Cartilagem Articular , Osteoartrite , Preparações Farmacêuticas , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Condrócitos , Condrogênese , Interleucina-1beta/farmacologia , Camundongos , Osteoartrite/tratamento farmacológico
17.
J Clin Invest ; 129(8): 3236-3251, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31305260

RESUMO

Tumorigenicity is a well-documented risk to overcome for pluripotent or multipotent cell applications in regenerative medicine. To address the emerging demand for safe cell sources in tissue regeneration, we established a novel, protein-based reprogramming method that does not require genome integration or oncogene activation to yield multipotent fibromodulin (FMOD)-reprogrammed (FReP) cells from dermal fibroblasts. When compared with induced pluripotent stem cells (iPSCs), FReP cells exhibited a superior capability for bone and skeletal muscle regeneration with markedly less tumorigenic risk. Moreover, we showed that the decreased tumorigenicity of FReP cells was directly related to an upregulation of cyclin-dependent kinase inhibitor 2B (CDKN2B) expression during the FMOD reprogramming process. Indeed, sustained suppression of CDKN2B resulted in tumorigenic, pluripotent FReP cells that formed teratomas in vivo that were indistinguishable from iPSC-derived teratomas. These results highlight the pivotal role of CDKN2B in cell fate determination and tumorigenic regulation and reveal an alternative pluripotent/multipotent cell reprogramming strategy that solely uses FMOD protein.


Assuntos
Reprogramação Celular , Inibidor de Quinase Dependente de Ciclina p15/biossíntese , Fibromodulina/metabolismo , Regulação Neoplásica da Expressão Gênica , Células-Tronco Multipotentes/metabolismo , Teratoma/metabolismo , Regulação para Cima , Linhagem Celular , Fibromodulina/genética , Humanos , Células-Tronco Multipotentes/patologia , Teratoma/genética , Teratoma/patologia
18.
Laryngoscope ; 129(11): E395-E401, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30671957

RESUMO

OBJECTIVES/HYPOTHESIS: To translate the Velopharyngeal Insufficiency Effects on Life Outcomes (VELO) instrument into Chinese and test its psychometric properties. STUDY DESIGN: Quality of life instrument translation and validation. METHODS: The original English version of the VELO instrument was translated into Mandarin, back-translated, and adapted among the Chinese population, based on the standardized guidelines for the cross-culture adaption process. Velopharyngeal insufficiency (VPI) patients were identified by a professional speech and language pathologist. Internal reliability of the VELO instrument was assessed by the Cronbach's α coefficient. Discriminant validity was tested by the Mann-Whitney U test. Construct validity was assessed by factor analysis. RESULTS: A total of 113 patients with VPI and 72 parents of the patients were enrolled. The mean age of the VPI patients was 14.8 years. Internal reliability was excellent; Cronbach's α coefficients were 0.92 and 0.94 for VPI patients and their parents, respectively. The Chinese VELO discriminated well between the VPI group and the controls, with a mean (standard deviation) score that was significantly lower for the VPI group (74.8 [25.7]) than the control group (98.0 [15.9]) (P < .001). The total scores and scores in the emotional domain or perception domain showed differences between VPI patients and their parents. Similar to the original study, the factor loading after rotation followed hypothesized domains largely, in spite of items from several domains loaded on the same factor. CONCLUSIONS: The translated Chinese version of the VELO instrument demonstrated an acceptable reliability, discriminant validity, and construct validity. These psychometric properties suggested theoretical evidence for the further use of the VELO instrument among Chinese patients with VPI. LEVEL OF EVIDENCE: 3b Laryngoscope, 129:E395-E401, 2019.


Assuntos
Povo Asiático/psicologia , Qualidade de Vida , Inquéritos e Questionários/normas , Insuficiência Velofaríngea/psicologia , Adolescente , Adulto , China , Feminino , Humanos , Masculino , Psicometria , Reprodutibilidade dos Testes , Traduções , Adulto Jovem
19.
J Bone Miner Res ; 34(3): 533-546, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30352124

RESUMO

NELL-1, an osteoinductive protein, has been shown to regulate skeletal ossification. Interestingly, an interstitial 11p14.1-p15.3 deletion involving the Nell-1 gene was recently reported in a patient with short stature and delayed fontanelle closure. Here we sought to define the role of Nell-1 in endochondral ossification by investigating Nell-1-specific inactivation in Col2α1-expressing cell lineages. Nell-1flox/flox ; Col2α1-Cre+ (Nell-1Col2α1 KO) mice were generated for comprehensive analysis. Nell-1Col2α1 KO mice were born alive but displayed subtle femoral length shortening. At 1 and 3 months postpartum, Nell-1 inactivation resulted in dwarfism and premature osteoporotic phenotypes. Specifically, Nell-1Col2α1 KO femurs and tibias exhibited significantly reduced length, bone mineral density (BMD), bone volume per tissue volume (BV/TV), trabecular number/thickness, cortical volume/thickness/density, and increased trabecular separation. The decreased bone formation rate revealed by dynamic histomorphometry was associated with altered numbers and/or function of osteoblasts and osteoclasts. Furthermore, longitudinal observations by in vivo micro-CT showed delayed and reduced mineralization at secondary ossification centers in mutants. Histologically, reduced staining intensities of Safranin O, Col-2, Col-10, and fewer BrdU-positive chondrocytes were observed in thinner Nell-1Col2α1 KO epiphyseal plates along with altered distribution and weaker expression level of Ihh, Patched-1, PTHrP, and PTHrP receptor. Primary Nell-1Col2α1 KO chondrocytes also exhibited decreased proliferation and differentiation, and its downregulated expression of the Ihh-PTHrP signaling molecules can be partially rescued by exogenous Nell-1 protein. Moreover, intranuclear Gli-1 protein and gene expression of the Gli-1 downstream target genes, Hip-1 and N-Myc, were also significantly decreased with Nell-1 inactivation. Notably, the rescue effects were diminished/reduced with application of Ihh signaling inhibitors, cyclopamine or GANT61. Taken together, these findings suggest that Nell-1 is a pivotal modulator of epiphyseal homeostasis and endochondral ossification. The cumulative chondrocyte-specific Nell-1 inactivation significantly impedes appendicular skeletogenesis resulting in dwarfism and premature osteoporosis through inhibiting Ihh signaling and predominantly altering the Ihh-PTHrP feedback loop. © 2018 American Society for Bone and Mineral Research.


Assuntos
Proteínas de Ligação ao Cálcio/deficiência , Condrócitos/metabolismo , Nanismo/metabolismo , Osteogênese , Osteoporose/metabolismo , Animais , Condrócitos/patologia , Nanismo/diagnóstico por imagem , Nanismo/genética , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Camundongos , Camundongos Knockout , Osteoporose/diagnóstico por imagem , Osteoporose/genética , Osteoporose/patologia , Proteína Relacionada ao Hormônio Paratireóideo/genética , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...