Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genetics ; 224(4)2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37283550

RESUMO

In many arthropods, including insects responsible for transmission of human diseases, behaviors that include mating, aggregation, and aggression are triggered by detection of pheromones. Extracellular odorant binding proteins are critical for pheromone detection in many insects and are secreted into the fluid bathing the olfactory neuron dendrites. In Drosophila melanogaster, the odorant binding protein LUSH is essential for normal sensitivity to the volatile sex pheromone, 11-cis vaccenyl acetate (cVA). Using a genetic screen for cVA pheromone insensitivity, we identified ANCE-3, a homolog of human angiotensin converting enzyme that is required for detection of cVA pheromone. The mutants have normal dose-response curves for food odors, although olfactory neuron amplitudes are reduced in all olfactory neurons examined. ance-3 mutants have profound delays in mating, and the courtship defects are primarily but not exclusively due to loss of ance-3 function in males. We demonstrate that ANCE-3 is required in the sensillae support cells for normal reproductive behavior, and that localization of odorant binding proteins to the sensillum lymph is blocked in the mutants. Expression of an ance-3 cDNA in sensillae support cells completely rescues the cVA responses, LUSH localization, and courtship defects. We show the courtship latency defects are not due to effects on olfactory neurons in the antenna nor mediated through ORCO receptors, but instead stem from ANCE-3-dependent effects on chemosensory sensillae in other body parts. These findings reveal an unexpected factor critical for pheromone detection with profound influence on reproductive behaviors.


Assuntos
Proteínas de Drosophila , Receptores Odorantes , Animais , Humanos , Masculino , Corte , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Odorantes , Peptidil Dipeptidase A , Feromônios/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Comportamento Sexual Animal/fisiologia
2.
Insects ; 13(10)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36292874

RESUMO

Human and insect olfaction share many general features, but insects differ from mammalian systems in important ways. Mammalian olfactory neurons share the same overlying fluid layer in the nose, and neuronal tuning entirely depends upon receptor specificity. In insects, the olfactory neurons are anatomically segregated into sensilla, and small clusters of olfactory neurons dendrites share extracellular fluid that can be independently regulated in different sensilla. Small extracellular proteins called odorant-binding proteins are differentially secreted into this sensillum lymph fluid where they have been shown to confer sensitivity to specific odorants, and they can also affect the kinetics of the olfactory neuron responses. Insect olfactory receptors are not G-protein-coupled receptors, such as vertebrate olfactory receptors, but are ligand-gated ion channels opened by direct interactions with odorant molecules. Recently, several examples of insect olfactory neurons expressing multiple receptors have been identified, indicating that the mechanisms for neuronal tuning may be broader in insects than mammals. Finally, recent advances in genome editing are finding applications in many species, including agricultural pests and human disease vectors.

3.
Int J Mol Sci ; 20(1)2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30577593

RESUMO

The phytochemical oxyresveratrol has been shown to exert diverse biological activities including prevention of obesity. However, the exact reason underlying the anti-obese effects of oxyresveratrol is not fully understood. Here, we investigated the effects and mechanism of oxyresveratrol in adipocytes and high-fat diet (HFD)-fed obese mice. Oxyresveratrol suppressed lipid accumulation and expression of adipocyte markers during the adipocyte differentiation of 3T3-L1 and C3H10T1/2 cells. Administration of oxyresveratrol in HFD-fed obese mice prevented body-weight gains, lowered adipose tissue weights, improved lipid profiles, and increased glucose tolerance. The anti-obese effects were linked to increases in energy expenditure and higher rectal temperatures without affecting food intake, fecal lipid content, and physical activity. The increased energy expenditure by oxyresveratrol was concordant with the induction of thermogenic genes including Ucp1, and the reduction of white adipocyte selective genes in adipose tissue. Furthermore, Foxo3a was identified as an oxyresveratrol-induced gene and it mimicked the effects of oxyresveratrol for induction of thermogenic genes and suppression of white adipocyte selective genes, suggesting the role of Foxo3a in oxyresveratrol-mediated anti-obese effects. Taken together, these data show that oxyresveratrol increases energy expenditure through the induction of thermogenic genes in adipose tissue and further implicates oxyresveratrol as an ingredient and Foxo3a as a molecular target for the development of functional foods in obesity and metabolic diseases.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético/efeitos dos fármacos , Proteína Forkhead Box O3/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Extratos Vegetais/farmacologia , Estilbenos/farmacologia , Proteína Desacopladora 1/genética , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Regulação da Expressão Gênica , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Metabolômica/métodos , Camundongos , Termogênese/genética , Proteína Desacopladora 1/metabolismo
4.
Mol Cells ; 37(9): 656-63, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25234465

RESUMO

Gintonin, a novel, ginseng-derived G protein-coupled lysophosphatidic acid (LPA) receptor ligand, elicits [Ca(2+)]i transients in neuronal and non-neuronal cells via pertussis toxin-sensitive and pertussis toxin-insensitive G proteins. The slowly activating delayed rectifier K(+) (I(Ks)) channel is a cardiac K(+) channel composed of KCNQ1 and KCNE1 subunits. The C terminus of the KCNQ1 channel protein has two calmodulin-binding sites that are involved in regulating I(Ks) channels. In this study, we investigated the molecular mechanisms of gintonin-mediated activation of human I(Ks) channel activity by expressing human I(Ks) channels in Xenopus oocytes. We found that gintonin enhances IKs channel currents in concentration- and voltage-dependent manners. The EC50 for the I(Ks) channel was 0.05 ± 0.01 µg/ml. Gintonin-mediated activation of the I(Ks) channels was blocked by an LPA1/3 receptor antagonist, an active phospholipase C inhibitor, an IP3 receptor antagonist, and the calcium chelator BAPTA. Gintonin-mediated activation of both the I(Ks) channel was also blocked by the calmodulin (CaM) blocker calmidazolium. Mutations in the KCNQ1 [Ca(2+)]i/CaM-binding IQ motif sites (S373P, W392R, or R539W)blocked the action of gintonin on I(Ks) channel. However, gintonin had no effect on hERG K(+) channel activity. These results show that gintonin-mediated enhancement of I(Ks) channel currents is achieved through binding of the [Ca(2+)]i/CaM complex to the C terminus of KCNQ1 subunit.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Canais de Potássio de Retificação Tardia/metabolismo , Canal de Potássio KCNQ1/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Panax/química , Proteínas de Plantas/farmacologia , Animais , Sítios de Ligação , Cálcio/metabolismo , Calmodulina/metabolismo , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Cobaias , Humanos , Isoxazóis/farmacologia , Canal de Potássio KCNQ1/genética , Miócitos Cardíacos/fisiologia , Oócitos/efeitos dos fármacos , Oócitos/fisiologia , Proteínas de Plantas/química , Propionatos/farmacologia , Receptores de Ácidos Lisofosfatídicos/metabolismo , Xenopus laevis
5.
Cell Physiol Biochem ; 34(3): 873-90, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25199952

RESUMO

BACKGROUND/AIMS: Ginseng regulates gastrointestinal (GI) motor activity but the underlying components and molecular mechanisms are unknown. We investigated the effect of gintonin, a novel ginseng-derived G protein-coupled lysophosphatidic acid (LPA) receptor ligand, on the pacemaker activity of the interstitial cells of Cajal (ICC) in murine small intestine and GI motility. MATERIALS AND METHODS: Enzymatic digestion was used to dissociate ICC from mouse small intestines. The whole-cell patch-clamp configuration was used to record pacemaker potentials and currents from cultured ICC in the absence or presence of gintonin. In vivo effects of gintonin on gastrointestinal (GI) motility were investigated by measuring the intestinal transit rate (ITR) of Evans blue in normal and streptozotocin (STZ)-induced diabetic mice. RESULTS: We investigated the effects of gintonin on pacemaker potentials and currents in cultured ICC from mouse small intestine. Gintonin caused membrane depolarization in current clamp mode but this action was blocked by Ki16425, an LPA1/3 receptor antagonist, and by the addition of GDPßS, a GTP-binding protein inhibitor, into the ICC. To study the gintonin signaling pathway, we examined the effects of U-73122, an active PLC inhibitor, and chelerythrine and calphostin, which inhibit PKC. All inhibitors blocked gintonin actions on pacemaker potentials, but not completely. Gintonin-mediated depolarization was lower in Ca(2+)-free than in Ca(2+)-containing external solutions and was blocked by thapsigargin. We found that, in ICC, gintonin also activated Ca(2+)-activated Cl(-) channels (TMEM16A, ANO1), but not TRPM7 channels. In vivo, gintonin (10-100 mg/kg, p.o.) not only significantly increased the ITR in normal mice but also ameliorated STZ-induced diabetic GI motility retardation in a dose-dependent manner. CONCLUSIONS: Gintonin-mediated membrane depolarization of pacemaker activity and ANO1 activation are coupled to the stimulation of GI contractility through LPA1/3 receptor signaling pathways in cultured murine ICC. Gintonin might be a ingredient responsible for ginseng-mediated GI tract modulations, and could be a novel candidate for development as a prokinetic agent that may prevent or alleviate GI motility dysfunctions in human patients.


Assuntos
Relógios Biológicos , Glicoproteínas/farmacologia , Células Intersticiais de Cajal/efeitos dos fármacos , Intestino Delgado/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Animais , ATPases Transportadoras de Cálcio/antagonistas & inibidores , Células Cultivadas , Diabetes Mellitus Experimental/fisiopatologia , Motilidade Gastrointestinal/efeitos dos fármacos , Células Intersticiais de Cajal/fisiologia , Intestino Delgado/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos ICR , Técnicas de Patch-Clamp , Proteína Quinase C/antagonistas & inibidores , Estreptozocina , Fosfolipases Tipo C/antagonistas & inibidores
6.
Proc Natl Acad Sci U S A ; 111(21): 7831-6, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24821794

RESUMO

In Drosophila melanogaster, the male-specific pheromone cVA (11-cis-vaccenyl acetate) functions as a sex-specific social cue. However, our understanding of the molecular mechanisms underlying cVA pheromone transduction and its regulation are incomplete. Using a genetic screen combined with an electrophysiological assay to monitor pheromone-evoked activity in the cVA-sensing Or67d neurons, we identified an olfactory sensitivity factor encoded by the dATP8B gene, the Drosophila homolog of mammalian ATP8B. dATP8B is expressed in all olfactory neurons that express Orco, the odorant receptor coreceptor, and the odorant responses in most Orco-expressing neurons are reduced. Or67d neurons are severely affected, with strongly impaired cVA-induced responses and lacking spontaneous spiking in the mutants. The dATP8B locus encodes a member of the P4-type ATPase family thought to flip aminophospholipids such as phosphatidylserine and phosphatidylethanolamine from one membrane leaflet to the other. dATP8B protein is concentrated in the cilia of olfactory neuron dendrites, the site of odorant transduction. Focusing on Or67d neuron function, we show that Or67d receptors are mislocalized in dATP8B mutants and that cVA responses can be restored to dATP8B mutants by misexpressing a wild-type dATP8B rescuing transgene, by expressing a vertebrate P4-type ATPase member in the pheromone-sensing neurons or by overexpressing Or67d receptor subunits. These findings reveal an unexpected role for lipid translocation in olfactory receptor expression and sensitivity to volatile odorants.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Ácidos Oleicos/metabolismo , Feromônios/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores Odorantes/metabolismo , Olfato/fisiologia , Animais , Sequência de Bases , Primers do DNA/genética , Proteínas de Drosophila/genética , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Dados de Sequência Molecular , Proteínas de Transferência de Fosfolipídeos/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA
7.
Curr Biol ; 23(24): 2481-90, 2013 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-24268416

RESUMO

BACKGROUND: Sensory neuron diversity ensures optimal detection of the external world and is a hallmark of sensory systems. An extreme example is the olfactory system, as individual olfactory receptor neurons (ORNs) adopt unique sensory identities by typically expressing a single receptor gene from a large genomic repertoire. In Drosophila, about 50 different ORN classes are generated from a field of precursor cells, giving rise to spatially restricted and distinct clusters of ORNs on the olfactory appendages. Developmental strategies spawning ORN diversity from an initially homogeneous population of precursors are largely unknown. RESULTS: Here we unravel the nested and binary logic of the combinatorial code that patterns the decision landscape of precursor states underlying ORN diversity in the Drosophila olfactory system. The transcription factor Rotund (Rn) is a critical component of this code that is expressed in a subset of ORN precursors. Addition of Rn to preexisting transcription factors that assign zonal identities to precursors on the antenna subdivides each zone and almost exponentially increases ORN diversity by branching off novel precursor fates from default ones within each zone. In rn mutants, rn-positive ORN classes are converted to rn-negative ones in a zone-specific manner. CONCLUSIONS: We provide a model describing how nested and binary changes in combinations of transcription factors could coordinate and pattern a large number of distinct precursor identities within a population to modulate the level of ORN diversity during development and evolution.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila/fisiologia , Receptores Odorantes/fisiologia , Olfato/fisiologia , Animais , Antenas de Artrópodes/citologia , Antenas de Artrópodes/metabolismo , Antenas de Artrópodes/fisiologia , Drosophila/citologia , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Modelos Biológicos , Receptores Odorantes/metabolismo , Olfato/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia
8.
BMB Rep ; 44(3): 170-5, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21429294

RESUMO

We identified a bovine B(12) trafficking chaperone bCblC in Bos taurus that showed 88% amino acid sequence identity with a human homologue. The protein bCblC was purified from E. coli by over-expression of the encoding gene. bCblC bound cyanocobalamin (CNCbl), methylcobalamin (MeCbl) and adenosylcobalamin (AdoCbl) in the base-off states and eliminated the upper axial ligands forming aquo/hydroxocobalamin (OH(2)/OHCbl) under aerobic conditions. A transition of OH(2)/OHCbl was induced upon binding to bCblC. Interestingly, bCblC-bound OH(2)/OHCbl did not react with reduced glutathione (GSH), while the reaction of free OH(2)/OHCbl with GSH resulted in the formation of glutathionylcobalamin (GSCbl) and glutathione disulfide (GSSG). Furthermore we found that bCblC eliminates the GSH ligand of GSCbl forming OH(2)/ OHCbl. The results demonstrated that bCblC is a B(12) trafficking chaperone that binds cobalamins and protects OH(2)/OHCbl from GSH, which could be oxidized to GSSG by free OH(2)/OHCbl.


Assuntos
Glutationa/metabolismo , Hidroxocobalamina/metabolismo , Chaperonas Moleculares/metabolismo , Vitamina B 12/metabolismo , Sequência de Aminoácidos , Animais , Bovinos , Glutationa/química , Humanos , Hidroxocobalamina/química , Chaperonas Moleculares/genética , Dados de Sequência Molecular , Alinhamento de Sequência , Vitamina B 12/química , Complexo Vitamínico B/metabolismo
9.
Mol Cells ; 31(2): 133-40, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21191818

RESUMO

Ginsenosides, active ingredients of Panax ginseng, are known to exhibit neuroprotective effects. Large-conductance Ca(2+)-activated K(+) (BK(Ca)) channels are key modulators of cellular excitability of neurons and vascular smooth muscle cells. In the present study, we examined the effects of ginsenosides on rat brain BK(Ca) (rSlo) channel activity heterologously expressed in Xenopus oocytes to elucidate the molecular mechanisms how ginsenoside regulates the BK(Ca) channel activity. Ginsenoside Rg(3) (Rg(3)) enhanced outward BK(Ca) channel currents. The Rg(3)-enhancement of outward BK(Ca) channel currents was concentration-dependent, voltage-dependent, and reversible. The EC(50) was 15.1 ± 3.1 µM. Rg(3) actions were not desensitized by repeated treatment. Tetraetylammonium (TEA), a K(+) channel blocker, inhibited BK(Ca) channel currents. We examined whether extracellular TEA treatment could alter the Rg(3) action and vice versa. TEA caused a rightward shift of the Rg(3) concentration-response curve (i.e., much higher concentration of Rg(3) is required for the activation of BK(Ca) channel compared to the absence of TEA), while Rg(3) caused a rightward shift of the TEA concentration-response curve in wild-type channels. Mutation of the extracellular TEA binding site Y360 to Y360I caused a rightward shift of the TEA concentration-response curve and almost abolished both the Rg(3) action and Rg(3)-induced rightward shift of TEA concentration-response curve. These results indicate that Tyr360 residue of BK(Ca) channel plays an important role in the Rg(3)-enhancement of BK(Ca) channel currents.


Assuntos
Ginsenosídeos/química , Ativação do Canal Iônico/efeitos dos fármacos , Canais de Potássio Ativados por Cálcio de Condutância Alta/química , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Tirosina/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Animais , Cálcio/metabolismo , Ginsenosídeos/farmacologia , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação/genética , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Técnicas de Patch-Clamp , Ratos , Relação Estrutura-Atividade , Tetraetilamônio/farmacologia , Xenopus
10.
Arch Pharm Res ; 33(11): 1843-50, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21116788

RESUMO

Visnagin, which is found in Ammi visnaga, has biological activity as a vasodilator and reduces blood pressure by inhibiting calcium influx into the cell. The present study demonstrates the anti-inflammatory effect of visnagin on lipopolysaccharide (LPS)-stimulated BV-2 microglial cells. When cells were treated with visnagin prior to LPS stimulation, production of nitric oxide and expression of iNOS were attenuated in a dose-dependent manner. Visnagin also caused a significant decrease of mRNA expression and release of TNF-α, IL-1ß and IFNγ. In addition, visnagin reduced LPS-induced IL-6 and MCP-1 mRNA level. We further found that visnagin dose-dependently inhibited LPS-induced AP-1 and NF-κB luciferase activities. Taken together, our results for the first time suggest that the anti-inflammatory effect of visnagin might result from the inhibition of transcription factors, such as AP-1 and NF-κB.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Quelina/análogos & derivados , Microglia/efeitos dos fármacos , NF-kappa B/metabolismo , Ammi/química , Animais , Linhagem Celular , Citocinas/metabolismo , Frutas , Inflamação/tratamento farmacológico , Quelina/farmacologia , Lipopolissacarídeos/imunologia , Camundongos , Microglia/imunologia , Microglia/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Fitoterapia , Fator de Transcrição AP-1/metabolismo
11.
Front Cell Neurosci ; 3: 10, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19826623

RESUMO

Since the emergence of the first living cells, survival has hinged on the ability to detect and localize chemicals in the environment. Modern animal species ranging from insects to mammals express large odorant receptor repertoires to detect the structurally diverse array of volatile molecules important for survival. Despite the essential nature of chemical detection, there is surprising diversity in the signaling mechanisms that different species use for odorant detection. In vertebrates, odorant receptors are classical G-protein coupled, seven transmembrane receptors that activate downstream effector enzymes that, in turn, produce second messengers that open ion channels. However, recent work reveals that insects have adopted different strategies to detect volatile chemicals. In Drosophila, the odorant receptors, predicted to have seven transmembrane domains, have reversed membrane topology compared to classical G-protein coupled receptors. Furthermore, insect odorant receptors appear to form odorant-gated ion channels. Pheromone detection in insects is even more unusual, utilizing soluble, extracellular receptors that undergo conformational activation. These alternate olfactory signaling strategies are discussed in terms of receptor design principles.

12.
Proc Natl Acad Sci U S A ; 105(31): 10996-1001, 2008 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-18653762

RESUMO

The only known volatile pheromone in Drosophila, 11-cis-vaccenyl acetate (cVA), mediates a variety of behaviors including aggregation, mate recognition, and sexual behavior. cVA is detected by a small set of olfactory neurons located in T1 trichoid sensilla on the antennae of males and females. Two components known to be required for cVA reception are the odorant receptor Or67d and the extracellular pheromone-binding protein LUSH. Using a genetic screen for cVA-insensitive mutants, we have identified a third component required for cVA reception: sensory neuron membrane protein (SNMP). SNMP is a homolog of CD36, a scavenger receptor important for lipoprotein binding and uptake of cholesterol and lipids in vertebrates. In humans, loss of CD36 is linked to a wide range of disorders including insulin resistance, dyslipidemia, and atherosclerosis, but how CD36 functions in lipid transport and signal transduction is poorly understood. We show that SNMP is required in pheromone-sensitive neurons for cVA sensitivity but is not required for sensitivity to general odorants. Using antiserum to SNMP infused directly into the sensillum lymph, we show that SNMP function is required on the dendrites of cVA-sensitive neurons; this finding is consistent with a direct role in cVA signal transduction. Therefore, pheromone perception in Drosophila should serve as an excellent model to elucidate the role of CD36 members in transmembrane signaling.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Neurônios/metabolismo , Ácidos Oleicos/metabolismo , Feromônios/metabolismo , Receptores de Feromônios/metabolismo , Transdução de Sinais/fisiologia , Olfato/fisiologia , Animais , Western Blotting , Primers do DNA/genética , Drosophila/fisiologia , Proteínas de Drosophila/genética , Imuno-Histoquímica , Mutação/genética , Receptores de Feromônios/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Comportamento Sexual Animal/fisiologia
13.
Cell ; 133(7): 1255-1265, 2008 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-18585358

RESUMO

Detection of volatile odorants by olfactory neurons is thought to result from direct activation of seven-transmembrane odorant receptors by odor molecules. Here, we show that detection of the Drosophila pheromone, 11-cis vaccenyl acetate (cVA), is instead mediated by pheromone-induced conformational shifts in the extracellular pheromone-binding protein, LUSH. We show that LUSH undergoes a pheromone-specific conformational change that triggers the firing of pheromone-sensitive neurons. Amino acid substitutions in LUSH that are predicted to reduce or enhance the conformational shift alter sensitivity to cVA as predicted in vivo. One substitution, LUSH(D118A), produces a dominant-active LUSH protein that stimulates T1 neurons through the neuronal receptor components Or67d and SNMP in the complete absence of pheromone. Structural analysis of LUSH(D118A) reveals that it closely resembles cVA-bound LUSH. Therefore, the pheromone-binding protein is an inactive, extracellular ligand converted by pheromone molecules into an activator of pheromone-sensitive neurons and reveals a distinct paradigm for detection of odorants.


Assuntos
Drosophila melanogaster/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Receptores Odorantes/química , Receptores Odorantes/metabolismo , Atrativos Sexuais/metabolismo , Acetatos/química , Acetatos/metabolismo , Substituição de Aminoácidos , Animais , Proteínas de Drosophila/metabolismo , Feminino , Masculino , Modelos Moleculares , Ácidos Oleicos/química , Ácidos Oleicos/metabolismo , Neurônios Receptores Olfatórios/química , Feromônios/química , Feromônios/metabolismo , Conformação Proteica , Receptores de Superfície Celular/metabolismo , Receptores Odorantes/genética , Receptores de Feromônios/metabolismo
14.
Cell ; 133(5): 761-3, 2008 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-18510917

RESUMO

Odorant detection in insects involves heterodimers between an odorant receptor (OR) and a conserved seven-transmembrane protein called Or83b, but the exact mechanism of OR signal transduction is unclear. Two recent studies in Nature (Sato et al., 2008; Wicher et al., 2008) now reveal that these OR-Or83b heterodimers form odorant-gated ion channels, revealing a surprising new mode of olfactory transduction.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Receptores Odorantes/metabolismo , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Modelos Biológicos , Odorantes , Neurônios Receptores Olfatórios/metabolismo , Receptores Odorantes/genética
15.
J Neurosci ; 26(34): 8727-33, 2006 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-16928861

RESUMO

Insect pheromones elicit stereotypic behaviors that are critical for survival and reproduction. Defining the relevant molecular mechanisms mediating pheromone signaling is an important step to manipulate pheromone-induced behaviors in pathogenic or agriculturally important pests. The only volatile pheromone identified in Drosophila is 11-cis-vaccenyl acetate (VA), a male-specific lipid that mediates aggregation behavior. VA activates a few dozen olfactory neurons located in T1 sensilla on the antenna of both male and female flies. Here, we identify a neuronal receptor required for VA sensitivity. We identified two mutants lacking functional T1 sensilla and show that the expression of the VA receptor is dramatically reduced or eliminated. Importantly, we show misexpression of this receptor in non-T1 neurons, normally insensitive to VA, confers pheromone sensitivity at physiologic concentrations. Sensitivity of T1 neurons to VA requires LUSH, an extracellular odorant-binding protein (OBP76a) present in the sensillum lymph bathing trichoid olfactory neuron dendrites. Here, we show LUSH are also required in non-T1 neurons misexpressing the receptor to respond to VA. These data provide new insight into the molecular components and neuronal basis of volatile pheromone perception.


Assuntos
Drosophila/fisiologia , Ácidos Oleicos/fisiologia , Feromônios/fisiologia , Receptores de Feromônios/fisiologia , Acetatos , Animais , Drosophila/genética , Feminino , Masculino , Mutação , Neurônios Receptores Olfatórios/fisiologia , Receptores Odorantes/metabolismo , Receptores Odorantes/fisiologia , Órgãos dos Sentidos/anormalidades , Órgãos dos Sentidos/metabolismo , Órgãos dos Sentidos/fisiologia , Olfato/fisiologia
16.
Mol Pharmacol ; 69(3): 1007-14, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16332986

RESUMO

Large-conductance Ca2+-activated K+ (BK(Ca)) channels are widely distributed and play key roles in various cell functions. We previously reported the chemical synthesis of several benzofuroindole compounds that act as potent openers of BK(Ca) channels. In this study, we investigated the mechanism of channel potentiation by one of the compounds, 7-trifluoromethyl-10H-benzo[4,5]furo[3,2-b]indole-1-carboxylic acid (TBIC), using electrophysiological means. This chemical highly activated cloned BK(Ca) channels from extracellular side independent of beta subunits and regardless of the presence of intracellular Ca2+. The EC50 and Hill coefficient for rat BK(Ca) channel alpha subunit, rSlo, were estimated as 8.9 +/- 1.5 microM and 0.9, respectively. TBIC shifted the conductance-voltage curve of rSlo channels to more hyperpolarized potentials without altering its voltage dependence. Single-channel recording revealed that TBIC increased the open probability of the channel in a dose-dependent manner without any changes in single-channel conductance. Strong potentiation by TBIC was also observed for native BK(Ca) channels from rat hippocampus pyramidal neurons. Thus, TBIC and the related benzofuroindole compounds can be useful tools to unravel the mechanism of this novel allosteric activation of BK(Ca) channels.


Assuntos
Ácidos Carboxílicos/farmacologia , Indóis/farmacologia , Canais de Potássio Cálcio-Ativados/agonistas , Animais , Ácidos Carboxílicos/química , Eletrofisiologia , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Humanos , Indóis/química , Oócitos/efeitos dos fármacos , Canais de Potássio/efeitos dos fármacos , Canais de Potássio Cálcio-Ativados/genética , Subunidades Proteicas/agonistas , Subunidades Proteicas/genética , Células Piramidais/efeitos dos fármacos , Ratos , Xenopus laevis
18.
Biophys J ; 86(5): 2871-82, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15111404

RESUMO

Large-conductance calcium-activated potassium (BK(Ca)) channels are composed of the pore-forming alpha-subunit and the auxiliary beta-subunits. The beta4-subunit is dominantly expressed in the mammalian central nervous system. To understand the physiological roles of the beta4-subunit on the BK(Ca) channel alpha-subunit (Slo), we isolated a full-length complementary DNA of rat beta4-subunit (rbeta4), expressed heterolgously in Xenopus oocytes, and investigated the detailed functional effects using electrophysiological means. When expressed together with rat Slo (rSlo), rbeta4 profoundly altered the gating characteristics of the Slo channel. At a given concentration of intracellular Ca(2+), rSlo/rbeta4 channels were more sensitive to transmembrane voltage changes. The activation and deactivation rates of macroscopic currents were decreased in a Ca(2+)-dependent manner. The channel activation by Ca(2+) became more cooperative by the coexpression of rbeta4. Single-channel recordings showed that the increased Hill coefficient for Ca(2+) was due to the changes in the open probability of the rSlo/rbeta4 channel. Single BK(Ca) channels composed of rSlo and rbeta4 also exhibited slower kinetics for steady-state gating compared with rSlo channels. Dwell times of both open and closed events were significantly increased. Because BK(Ca) channels are known to modulate neuroexcitability and the expression of the beta4-subunit is highly concentrated in certain subregions of brain, the electrophysiological properties of individual neurons should be affected profoundly by the expression of this second subunit.


Assuntos
Canais de Potássio Cálcio-Ativados/química , Canais de Potássio/química , Animais , Encéfalo/metabolismo , Cálcio/química , Cálcio/metabolismo , DNA Complementar/metabolismo , Relação Dose-Resposta a Droga , Eletrofisiologia , Cinética , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta , Subunidades beta do Canal de Potássio Ativado por Cálcio de Condutância Alta , Canais de Potássio Ativados por Cálcio de Condutância Alta , Neurônios/metabolismo , Oócitos/metabolismo , Canais de Potássio Cálcio-Ativados/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Probabilidade , Estrutura Terciária de Proteína , RNA Complementar/metabolismo , Ratos , Superfamília Shaker de Canais de Potássio , Xenopus
19.
Biochem Biophys Res Commun ; 298(4): 478-85, 2002 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-12408977

RESUMO

Cyclic nucleotide-gated (CNG) channels are composed of the tetramer of alpha-subunit alone or alpha- and beta-subunits. The alpha-subunits of these channels have a conserved glutamate (Glu) residue within the pore-forming region and the residue determines the selectivity as well as the affinity for the extracellular divalent cations. Using the high-affinity mutant (E363D) of bovine retinal CNG channel in which the Glu at position 363 was replaced to Asp, we constructed tandem dimers and investigated the binding characteristics of divalent cations to the site. The gating and permeation characteristics of individual homomeric tandem dimers are indistinguishable to those of homo-tetramers formed by parental monomers. The heteromeric tandem dimers showed the binding affinity for Sr(2+) identical to the geometric mean of the affinities for two parent channels, indicating the energy additive and thus the simultaneous interaction. On the other hand, the binding affinity for Mg(2+) followed the harmonic mean of those parent channels indicating that Mg(2+) interacts more strongly with the subunit bearing Asp residue at the position. Thus the results strongly suggest that the Glu363 residues in the CNG channel pore be flexible enough to adapt different binding symmetries for different divalent cations. Moreover, the simultaneous interaction between the four Glu residues and Sr(2+) provides an important structural constraint to the CNG channel outer vestibule of unknown structure.


Assuntos
Cátions Bivalentes/metabolismo , Canais Iônicos/metabolismo , Sequência de Aminoácidos , Animais , Canais de Cátion Regulados por Nucleotídeos Cíclicos , Dimerização , Feminino , Canais Iônicos/química , Transporte de Íons , Magnésio/metabolismo , Dados de Sequência Molecular , Ligação Proteica , Estrôncio/metabolismo , Xenopus laevis
20.
Neurosci Lett ; 318(1): 9-12, 2002 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-11786213

RESUMO

We have investigated the modulation of a cloned rat brain alpha-subunit of large conductance Ca(2+)-activated K(+) channels (rSlo K(+) channels) by glutathione (GSH), a physiological sulfhydryl-specific reducing reagent. The application of GSH to the intracellular side of excised inside-out macroscopic patches of rslo-transfected HEK293 cells reversibly activated the currents. The activation rate constants of the current were increased while the deactivation rate constants were decreased by GSH at all voltages tested without any change in the voltage dependence of the rate constants. GSH induced a leftward shift of the steady state conductance-voltage relationship curve of the current with no change in the slope of the curve. These results suggest that modulation by GSH may constitute an important regulatory mechanism of neuronal large conductance Ca(2+)-activated K(+) channels.


Assuntos
Glutationa/farmacologia , Ativação do Canal Iônico/efeitos dos fármacos , Canais de Potássio Cálcio-Ativados/genética , Canais de Potássio Cálcio-Ativados/metabolismo , Animais , Células Cultivadas , Clonagem Molecular , Humanos , Rim/citologia , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta , Canais de Potássio Ativados por Cálcio de Condutância Alta , Potenciais da Membrana/efeitos dos fármacos , Oxirredução , Técnicas de Patch-Clamp , Ratos , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...