Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Stat Phys ; 183(1): 17, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34720182

RESUMO

This paper is devoted to the analysis of Lindblad operators of Quantum Reset Models, describing the effective dynamics of tri-partite quantum systems subject to stochastic resets. We consider a chain of three independent subsystems, coupled by a Hamiltonian term. The two subsystems at each end of the chain are driven, independently from each other, by a reset Lindbladian, while the center system is driven by a Hamiltonian. Under generic assumptions on the coupling term, we prove the existence of a unique steady state for the perturbed reset Lindbladian, analytic in the coupling constant. We further analyze the large times dynamics of the corresponding CPTP Markov semigroup that describes the approach to the steady state. We illustrate these results with concrete examples corresponding to realistic open quantum systems.

2.
Phys Rev Lett ; 127(10): 100601, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34533344

RESUMO

We present a collision model for the charging of a quantum battery by identical nonequilibrium qubit units. When the units are prepared in a mixture of energy eigenstates, the energy gain in the battery can be described by a classical random walk, where both average energy and variance grow linearly with time. Conversely, when the qubits contain quantum coherence, interference effects buildup in the battery and lead to a faster spreading of the energy distribution, reminiscent of a quantum random walk. This can be exploited for faster and more efficient charging of a battery initialized in the ground state. Specifically, we show that coherent protocols can yield higher charging power than any possible incoherent strategy, demonstrating a quantum speed-up at the level of a single battery. Finally, we characterize the amount of extractable work from the battery through the notion of ergotropy.

3.
Phys Rev E ; 100(4-1): 042130, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31770926

RESUMO

In classical thermodynamics the work cost of control can typically be neglected. On the contrary, in quantum thermodynamics the cost of control constitutes a fundamental contribution to the total work cost. Here, focusing on quantum refrigeration, we investigate how the level of control determines the fundamental limits to cooling and how much work is expended in the corresponding process. We compare two extremal levels of control: first, coherent operations, where the entropy of the resource is left unchanged, and, second, incoherent operations, where only energy at maximum entropy (i.e., heat) is extracted from the resource. For minimal machines, we find that the lowest achievable temperature and associated work cost depend strongly on the type of control, in both single-cycle and asymptotic regimes. We also extend our analysis to general machines. Our work provides a unified picture of the different approaches to quantum refrigeration developed in the literature, including algorithmic cooling, autonomous quantum refrigerators, and the resource theory of quantum thermodynamics.

4.
Phys Rev Lett ; 123(17): 170605, 2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31702237

RESUMO

Cooling quantum systems is arguably one of the most important thermodynamic tasks connected to modern quantum technologies and an interesting question from a foundational perspective. It is thus of no surprise that many different theoretical cooling schemes have been proposed, differing in the assumed control paradigm and complexity, and operating either in a single cycle or in steady state limits. Working out bounds on quantum cooling has since been a highly context dependent task with multiple answers, with no general result that holds independent of assumptions. In this Letter we derive a universal bound for cooling quantum systems in the limit of infinite cycles (or steady state regimes) that is valid for any control paradigm and machine size. The bound only depends on a single parameter of the refrigerator and is theoretically attainable in all control paradigms. For qubit targets we prove that this bound is achievable in a single cycle and by autonomous machines.

5.
Phys Rev Lett ; 118(9): 097701, 2017 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-28306300

RESUMO

The oscillatory interlayer exchange interaction between two magnetic layers separated by a metallic spacer is one of the few coherent quantum phenomena that persists at room temperature. Here, we show that this interaction can be controlled dynamically by illuminating the sample (e.g., a spin valve) with radiation in the 10-100 THz range. We predict that the exchange interaction can be changed from ferromagnetic to antiferromagnetic (and vice versa) by tuning the amplitude and/or the frequency of the radiation. Our chief theoretical result is an expression that relates the dynamical exchange interaction to the static one that has already been extensively measured.

6.
Phys Rev Lett ; 108(18): 186806, 2012 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-22681105

RESUMO

Electron transport in mesoscopic conductors has traditionally involved investigations of the mean current and the fluctuations of the current. A complementary view on charge transport is provided by the distribution of waiting times between charge carriers, but a proper theoretical framework for coherent electronic systems has so far been lacking. Here we develop a quantum theory of electron waiting times in mesoscopic conductors expressed by a compact determinant formula. We illustrate our methodology by calculating the waiting time distribution for a quantum point contact and find a crossover from Wigner-Dyson statistics at full transmission to Poisson statistics close to pinch-off. Even when the low-frequency transport is noiseless, the electrons are not equally spaced in time due to their inherent wave nature. We discuss the implications for renewal theory in mesoscopic systems and point out several analogies with level spacing statistics and random matrix theory.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...