Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 230
Filtrar
1.
Prog Neurobiol ; 236: 102603, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38604582

RESUMO

The STRAT-PARK initiative aims to provide a platform for stratifying Parkinson's disease (PD) into biological subtypes, using a bottom-up, multidisciplinary biomarker-based and data-driven approach. PD is a heterogeneous entity, exhibiting high interindividual clinicopathological variability. This diversity suggests that PD may encompass multiple distinct biological entities, each driven by different molecular mechanisms. Molecular stratification and identification of disease subtypes is therefore a key priority for understanding and treating PD. STRAT-PARK is a multi-center longitudinal cohort aiming to recruit a total of 2000 individuals with PD and neurologically healthy controls from Norway and Canada, for the purpose of identifying molecular disease subtypes. Clinical assessment is performed annually, whereas biosampling, imaging, and digital and neurophysiological phenotyping occur every second year. The unique feature of STRAT-PARK is the diversity of collected biological material, including muscle biopsies and platelets, tissues particularly useful for mitochondrial biomarker research. Recruitment rate is ∼150 participants per year. By March 2023, 252 participants were included, comprising 204 cases and 48 controls. STRAT-PARK is a powerful stratification initiative anticipated to become a global research resource, contributing to personalized care in PD.


Assuntos
Doença de Parkinson , Doença de Parkinson/diagnóstico , Doença de Parkinson/fisiopatologia , Humanos , Noruega , Estudos de Coortes , Medicina de Precisão/métodos , Canadá , Estudos Longitudinais , Biomarcadores , Idoso , Masculino , Pessoa de Meia-Idade , Feminino
2.
J Magn Reson Imaging ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587279

RESUMO

BACKGROUND: The choroid plexus (ChP), a densely vascularized structure, has drawn increasing attention for its involvement in brain homeostasis and waste clearance. While the volumetric changes have been explored in many imaging studies, few studies have investigated the vascular degeneration associated with aging in the ChP. PURPOSE: To investigate the sub-structural characteristics of the ChP, particularly the vascular compartment using high-resolution 7T imaging enhanced with Ferumoxytol, an ultrasmall super-paramagnetic iron oxide, which greatly increase the susceptibility contrast for vessels. STUDY TYPE: Prospective. SUBJECTS: Forty-nine subjects without neurological disorders (age: 21-80 years; 42 ± 17 years; 20 females). FIELD STRENGTH/SEQUENCE: 7-T with 2D and 3D T2* GRE, 3D MPRAGE T1, 2D TSE T2, and 2D FLAIR. ASSESSMENT: The vascular and stromal compartments of the ChP were segmented using K-means clustering on post-contrast 2D GRE images. Visual and qualitative assessment of ChP vascular characteristics were conducted independently by three observers. Vascular density (Volvessel/VolChP ratio) and susceptibility change (Δχ) induced by Ferumoxytol were analyzed on 3D GRE-derived susceptibility-weighted imaging and quantitative susceptibility mapping, respectively. STATISTICAL TESTS: Independent t-test, Mann-Whitney U test, and Chi-square test were utilized for group comparisons. The relationship between age and ChP's vascular alterations was examined using Pearson's correlation. Intra-class coefficient was calculated for inter-observer agreement. A P value <0.05 was considered statistically significant. RESULTS: 2D GRE images demonstrated superior contrast and accurate delineation of ChP substructures (ICC = 0.86). Older subjects exhibited a significantly smaller vascular density (16.5 ± 4.34%) and lower Δχ (22.10 ± 12.82 ppb) compared to younger subjects (24.85 ± 6.84% and 34.64 ± 12.69 ppb). Vascular density and mean Δχ within the ChP negatively correlated with age (r = -0.48, and r = -0.45). DATA CONCLUSION: Ferumoxytol-enhanced 7T images can demonstrate ChP alterations in elderly with decreased vascular density and expansion of nonvascular compartment. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 2.

3.
Neuroimage ; 291: 120588, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38537765

RESUMO

BACKGROUND: Parkinson's disease (PD) is associated with the loss of neuromelanin (NM) and increased iron in the substantia nigra (SN). Magnetization transfer contrast (MTC) is widely used for NM visualization but has limitations in brain coverage and scan time. This study aimed to develop a new approach called Proton-density Enhanced Neuromelanin Contrast in Low flip angle gradient echo (PENCIL) imaging to visualize NM in the SN. METHODS: This study included 30 PD subjects and 50 healthy controls (HCs) scanned at 3T. PENCIL and MTC images were acquired. NM volume in the SN pars compacta (SNpc), normalized image contrast (Cnorm), and contrast-to-noise ratio (CNR) were calculated. The change of NM volume in the SNpc with age was analyzed using the HC data. A group analysis compared differences between PD subjects and HCs. Receiver operating characteristic (ROC) analysis and area under the curve (AUC) calculations were used to evaluate the diagnostic performance of NM volume and CNR in the SNpc. RESULTS: PENCIL provided similar visualization and structural information of NM compared to MTC. In HCs, PENCIL showed higher NM volume in the SNpc than MTC, but this difference was not observed in PD subjects. PENCIL had higher CNR, while MTC had higher Cnorm. Both methods revealed a similar pattern of NM volume in SNpc changes with age. There were no significant differences in AUCs between NM volume in SNpc measured by PENCIL and MTC. Both methods exhibited comparable diagnostic performance in this regard. CONCLUSIONS: PENCIL imaging provided improved CNR compared to MTC and showed similar diagnostic performance for differentiating PD subjects from HCs. The major advantage is PENCIL has rapid whole-brain coverage and, when using STAGE imaging, offers a one-stop quantitative assessment of tissue properties.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico por imagem , Substância Negra/diagnóstico por imagem , Parte Compacta da Substância Negra , Imageamento por Ressonância Magnética/métodos , Melaninas
4.
Neuroimage ; 291: 120597, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38554779

RESUMO

Mapping the small venous vasculature of the hippocampus in vivo is crucial for understanding how functional changes of hippocampus evolve with age. Oxygen utilization in the hippocampus could serve as a sensitive biomarker for early degenerative changes, surpassing hippocampal tissue atrophy as the main source of information regarding tissue degeneration. Using an ultrahigh field (7T) susceptibility-weighted imaging (SWI) sequence, it is possible to capture oxygen-level dependent contrast of submillimeter-sized vessels. Moreover, the quantitative susceptibility mapping (QSM) results derived from SWI data allow for the simultaneous estimation of venous oxygenation levels, thereby enhancing the understanding of hippocampal function. In this study, we proposed two potential imaging markers in a cohort of 19 healthy volunteers aged between 20 and 74 years. These markers were: 1) hippocampal venous density on SWI images and 2) venous susceptibility (Δχvein) in the hippocampus-associated draining veins (the inferior ventricular veins (IVV) and the basal veins of Rosenthal (BVR) using QSM images). They were chosen specifically to help characterize the oxygen utilization of the human hippocampus and medial temporal lobe (MTL). As part of the analysis, we demonstrated the feasibility of measuring hippocampal venous density and Δχvein in the IVV and BVR at 7T with high spatial resolution (0.25 × 0.25 × 1 mm3). Our results demonstrated the in vivo reconstruction of the hippocampal venous system, providing initial evidence regarding the presence of the venous arch structure within the hippocampus. Furthermore, we evaluated the age effect of the two quantitative estimates and observed a significant increase in Δχvein for the IVV with age (p=0.006, r2 = 0.369). This may suggest the potential application of Δχvein in IVV as a marker for assessing changes in atrophy-related hippocampal oxygen utilization in normal aging and neurodegenerative diseases such as AD and dementia.


Assuntos
Veias Cerebrais , Imageamento por Ressonância Magnética , Humanos , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Imageamento por Ressonância Magnética/métodos , Veias Cerebrais/diagnóstico por imagem , Oxigênio , Hipocampo/diagnóstico por imagem , Atrofia
5.
Quant Imaging Med Surg ; 14(2): 1916-1929, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38415136

RESUMO

Background: Enlarged deep medullary veins (EDMVs) in patients with Sturge-Weber syndrome (SWS) may channel venous blood from the surface to the deep vein system in brain regions affected by the leptomeningeal venous malformation. Thus, the quantification of EDMV volume may provide an objective imaging marker for this vascular compensatory process. The present study proposes a novel analytical method to quantify enlarged EDMV volumes in the affected hemisphere of patients with unilateral SWS. Methods: Twenty young subjects, including 10 patients with unilateral SWS and 10 healthy siblings (age 14.5±6.7 and 16.0±7.0 years, respectively) underwent 3T brain MRI scanning using susceptibility-weighted imaging (SWI) and volumetric T1-weighted sequences. The proposed image analytic steps segmented EDMVs in white matter regions, defined on the volumetric T1-weighted images, by statistically associating the likelihood of intensity, location, and tubular shape on SWI. The volumes of the segmented EDMVs, calculated in each hemisphere, were compared between affected and unaffected hemispheres. EDMV volumes were also correlated with visually assessed EDMV scores, hemispheric white matter volumes, and cortical surface areas. Parametric tests including Pearson's correlation, unpaired and paired t-tests, were used. A P value <0.05 was considered statistically significant. Results: It was found that EDMVs were identified well in SWS-affected hemispheres while calcified regions were excluded. Mean EDMV volumes in the SWS-affected hemispheres were 10-12-fold greater than in the unaffected or healthy control hemispheres; while white matter volumes and cortical surface areas were lower. EDMV volumes in the SWS-affected hemispheres showed a strong positive correlation with the visual EDMV scores (r=0.88, P=0.001) and an inverse correlation with cortical surface area ratios (r=-0.65, P=0.04) but no correlation with white matter volume ratios. Conclusions: EDMVs were detected in the SWS-affected atrophic hemispheres reliably while avoiding calcified regions. The approach can be used to quantify enlarged deep cerebral veins in the human brain, which may provide a potential marker of cerebral venous remodeling.

6.
medRxiv ; 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38260542

RESUMO

Studying the relationship between cerebral oxygen utilization and cognitive impairment is essential to understanding neuronal functional changes in the disease progression of multiple sclerosis (MS). This study explores the potential of using venous susceptibility in internal cerebral veins (ICVs) as an imaging biomarker for cognitive impairment in relapsing-remitting MS (RRMS) patients. Quantitative susceptibility mapping derived from fully flow-compensated MRI phase data was employed to directly measure venous blood oxygen saturation levels (SvO2) in the ICVs. Results revealed a significant reduction in the susceptibility of ICVs (212.4 ± 30.8 ppb vs 239.4 ± 25.9 ppb) and a significant increase of SvO2 (74.5 ± 1.89 % vs 72.4 ± 2.23 %) in patients with RRMS compared with age- and sex-matched healthy controls. Both the susceptibility of ICVs (r = 0.646, p = 0.004) and the SvO2 (r = -0.603, p = 0.008) exhibited a strong correlation with cognitive decline in these patients assessed by the Paced Auditory Serial Addition Test, while no significant correlation was observed with clinical disability measured by the Expanded Disability Status Scale. The findings suggest that venous susceptibility in ICVs has the potential to serve as a specific indicator of oxygen metabolism and cognitive function in RRMS.

7.
J Magn Reson Imaging ; 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38236577

RESUMO

BACKGROUND: Nigrosome 1 (N1), the largest nigrosome region in the ventrolateral area of the substantia nigra pars compacta, is identifiable by the "N1 sign" in long echo time gradient echo MRI. The N1 sign's absence is a vital Parkinson's disease (PD) diagnostic marker. However, it is challenging to visualize and assess the N1 sign in clinical practice. PURPOSE: To automatically detect the presence or absence of the N1 sign from true susceptibility weighted imaging by using deep-learning method. STUDY TYPE: Prospective. POPULATION/SUBJECTS: 453 subjects, including 225 PD patients, 120 healthy controls (HCs), and 108 patients with other movement disorders, were prospectively recruited including 227 males and 226 females. They were divided into training, validation, and test cohorts of 289, 73, and 91 cases, respectively. FIELD STRENGTH/SEQUENCE: 3D gradient echo SWI sequence at 3T; 3D multiecho strategically acquired gradient echo imaging at 3T; NM-sensitive 3D gradient echo sequence with MTC pulse at 3T. ASSESSMENT: A neuroradiologist with 5 years of experience manually delineated substantia nigra regions. Two raters with 2 and 36 years of experience assessed the N1 sign on true susceptibility weighted imaging (tSWI), QSM with high-pass filter, and magnitude data combined with MTC data. We proposed NINet, a neural model, for automatic N1 sign identification in tSWI images. STATISTICAL TESTS: We compared the performance of NINet to the subjective reference standard using Receiver Operating Characteristic analyses, and a decision curve analysis assessed identification accuracy. RESULTS: NINet achieved an area under the curve (AUC) of 0.87 (CI: 0.76-0.89) in N1 sign identification, surpassing other models and neuroradiologists. NINet localized the putative N1 sign within tSWI images with 67.3% accuracy. DATA CONCLUSION: Our proposed NINet model's capability to determine the presence or absence of the N1 sign, along with its localization, holds promise for enhancing diagnostic accuracy when evaluating PD using MR images. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 1.

8.
Magn Reson Imaging ; 107: 55-68, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38181834

RESUMO

Increasing the signal-to-noise ratio (SNR) has always been of critical importance for magnetic resonance imaging. Although increasing field strength provides a linear increase in SNR, it is more and more costly as field strength increases. Therefore, there is a major effort today to use signal processing methods to improve SNR since it is more efficient and economical. There are a variety of methods to improve SNR such as averaging the data at the expense of imaging time, or collecting the data with a lower resolution, all of these methods, including imaging processing methods, usually come at the expense of loss of image detail or image blurring. Therefore, we developed a new mathematical approach called CROWN (Constrained Reconstruction of White Noise) to enhance SNR without loss of structural detail and without affecting scanning time. In this study, we introduced and tested the concept behind CROWN specifically for STAGE (strategically acquired gradient echo) imaging. The concept itself is presented first, followed by simulations to demonstrate its theoretical effectiveness. Then the SNR improvement on proton spin density (PSD) and R2⁎ maps was investigated using brain STAGE data acquired from 10 healthy controls (HCs) and 10 patients with Parkinson's disease (PD). For the PSD and R2* maps, the SNR and CNR between white matter and gray matter were improved by a factor of 1.87 ± 0.50 and 1.72 ± 0.88, respectively. The white matter hyperintensity lesions in PD patients were more clearly defined after CROWN processing. Using these improved maps, simulated images for any repeat time, echo time or flip angle can be created with improved SNR. The potential applications of this technology are to trade off the increased SNR for higher resolution images and/or faster imaging.


Assuntos
Aumento da Imagem , Processamento de Imagem Assistida por Computador , Humanos , Processamento de Imagem Assistida por Computador/métodos , Aumento da Imagem/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Substância Cinzenta/diagnóstico por imagem , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Razão Sinal-Ruído
9.
Aging Dis ; 15(2): 584-600, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37611901

RESUMO

The accumulation of harmful substances has long been recognized as a likely cause of many neurodegenerative diseases. The two classic brain clearance pathways are cerebrospinal fluid (CSF) and vascular circulation systems. Since the discovery of the glymphatic system, research on the CSF pathway has gained momentum, and impaired CSF clearance has been implicated in virtually all neurodegenerative animal models. However, the contribution of the direct participation of vascular transport across the blood-brain barrier in clearing substances is often ignored in glymphatic papers. Supportive evidence for the direct involvement of parenchymal vasculature in substance clearance is accumulated. First, multiple mechanisms have been proposed for the vascular drainage of exogenous and endogenous substances across the blood-brain barriers. Second, the "traditional" role of arachnoid villi and granulations as the main site for CSF draining into the vasculature system has been questioned. Third, MRI studies using different CSF tracers indicate that parenchymal vasculature directly participates in tracer efflux, consistent with immunohistochemical findings. Here we will review evidence in the literature that supports the direct participation of the parenchymal vascular system in substance clearance, in addition to the CSF clearance pathways.


Assuntos
Encéfalo , Sistema Glinfático , Animais , Encéfalo/metabolismo , Barreira Hematoencefálica , Transporte Biológico
10.
Magn Reson Imaging ; 106: 110-118, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38145698

RESUMO

PURPOSE: Although lesion dissemination in time is a defining characteristic of multiple sclerosis (MS), there is a limited understanding of lesion heterogeneity. Currently, conventional sequences such as fluid attenuated inversion recovery (FLAIR) and T1-weighted (T1W) data are used to assess MS lesions qualitatively. Estimating water content could provide a measure of local tissue rarefaction, or reduced tissue density, resulting from chronic inflammation. Our goal was to utilize the proton spin density (PD), derived from a rapid, multi-contrast STAGE (strategically acquired gradient echo) protocol to characterize white matter (WM) lesions seen on T2W, FLAIR and T1W data. MATERIALS AND METHODS: Twenty (20) subjects with relapsing-remitting MS were scanned at 3 T using T1W, T2-weighted, FLAIR and strategically acquired gradient echo (STAGE) sequences. PD and T1 maps were derived from the STAGE data. Disease severity scores, including Extended Disability Status Scale (EDSS) and Multiple Sclerosis Functional Composite (MSFC), were correlated with total, high PD and high T1 lesion volumes. A probability map of high PD regions and all lesions across all subjects was generated. Five perilesional normal appearing WM (NAWM) bands surrounding the lesions were generated to compare the median PD and T1 values in each band with the lesional values and the global WM. RESULTS: T1W intensity was negatively correlated with PD as expected (R = -0.87, p < 0.01, R2 = 0.756) and the FLAIR signal was suppressed for high PD volumes within the lesions, roughly for PD ≥ 0.85. The threshold for high PD and T1 regions was set to 0.909 and 1953.6 ms, respectively. High PD regions showed a high probability of occurrence near the boundary of the lateral ventricles. EDSS score and nine-hole peg test (dominant and non-dominant hand) were significantly correlated with the total lesion volume and the volumes of high PD and T1 regions (p < 0.05). There was a significant difference in PD/T1 values between the high PD/T1 regions within the lesions and the remaining lesional tissue (p < 0.001). In addition, the PD values of the first NAWM perilesional band directly adjacent to the lesional boundary displayed a significant difference (p < 0.05) compared to the global WM. CONCLUSION: Lesions with high PD and T1s had the highest probability of occurrence at the boundary of the lateral ventricles and likely represent chronic lesions with significant local tissue rarefaction. Moreover, the perilesional NAWM exhibited subtly increasing PD and T1 values from the NAWM up to the lesion boundary. Unlike on the T1 maps, the perilesional band adjacent to the lesion boundary possessed a significantly higher PD value than the global WM PD values. This shows that PD maps were sensitive to the subtle changes in NAWM surrounding the lesions.


Assuntos
Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Substância Branca , Humanos , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Prótons , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia
11.
Neuroimage ; 281: 120370, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37716591

RESUMO

The goal of this work was to explore the total iron burden of cerebral microbleeds (CMBs) using a semi-automatic quantitative susceptibility mapping and to establish its effect on brain atrophy through the mediating effect of white matter hyperintensities (WMH). A total of 95 community-dwelling people were enrolled. Quantitative susceptibility mapping (QSM) combined with a dynamic programming algorithm (DPA) was used to measure the characteristics of 1309 CMBs. WMH were evaluated according to the Fazekas scale, and brain atrophy was assessed using a 2D linear measurement method. Histogram analysis was used to explore the distribution of CMBs susceptibility, volume, and total iron burden, while a correlation analysis was used to explore the relationship between volume and susceptibility. Stepwise regression analysis was used to analyze the risk factors for CMBs and their contribution to brain atrophy. Mediation analysis was used to explore the interrelationship between CMBs and brain atrophy. We found that the frequency distribution of susceptibility of the CMBs was Gaussian in nature with a mean of 201 ppb and a standard deviation of 84 ppb; however, the volume and total iron burden of CMBs were more Rician in nature. A weak but significant correlation between the susceptibility and volume of CMBs was found (r = -0.113, P < 0.001). The periventricular WMH (PVWMH) was a risk factor for the presence of CMBs (number: ß = 0.251, P = 0.014; volume: ß = 0.237, P = 0.042; total iron burden: ß = 0.238, P = 0.020) and was a risk factor for brain atrophy (third ventricle width: ß = 0.325, P = 0.001; Evans's index: ß = 0.323, P = 0.001). PVWMH had a significant mediating effect on the correlation between CMBs and brain atrophy. In conclusion, QSM along with the DPA can measure the total iron burden of CMBs. PVWMH might be a risk factor for CMBs and may mediate the effect of CMBs on brain atrophy.

12.
Magn Reson Imaging ; 102: 133-140, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37207824

RESUMO

OBJECTIVES: The objective of this work was to investigate the application of 2D Time-of-Flight (TOF) magnetic resonance angiography (MRA) to observe the placental vasculature at both 1.5 T and 3 T. METHODS: Fifteen appropriate for gestational age (AGA) (GA: 29.7 ± 3.4 weeks; GA range: 23 and 6/7 weeks to 36 and 2/7 weeks) and eleven patients with an abnormal singleton pregnancy (GA: 31.4 ± 4.4 weeks; GA range: 24 weeks to 35 and 2/7 weeks) were recruited in the study. Three AGA patients were scanned twice at different gestational ages. Patients were scanned either at 3 T or 1.5 T using both T2-HASTE and 2D TOF to image the entire placental vasculature. RESULTS: The umbilical, chorionic vessels, stem vessels, arcuate arteries, radial arteries, and spiral arteries were shown in most of the subjects. Hyrtl's anastomosis was found in two subjects in the 1.5 T data. The uterine arteries were observed in more than half of the subjects. For those patients scanned twice, the same spiral arteries were identified in both scans. CONCLUSIONS: 2D TOF is a technique that can be applied in studying the fetal-placental vasculature at both 1.5 T and 3 T.


Assuntos
Angiografia por Ressonância Magnética , Placenta , Humanos , Feminino , Gravidez , Lactente , Placenta/diagnóstico por imagem , Angiografia por Ressonância Magnética/métodos
13.
Neuroimaging Clin N Am ; 33(2): 343-356, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36965951

RESUMO

Susceptibility-weighted imaging (SWI) is a MR imaging technique suited to detect structural and microstructural abnormalities in traumatic brain injury (TBI). This review article provide an insight in to the physics principles of SWI and its clinical application in unraveling the complex interaction of the biophysical mechanisms of head injury. Literature evidences support SWI as the most ideal sequence in detection of microbleeds, which is the "tip of the iceberg" biomarker of microvascular injuries. The review also detailed the emerging advance techniques of Quantitative susceptibility mapping (QSM) and artificial intelligence offer the ability to detect and follow the evolution of microbleeds in patient with chronic TBI. These new techniques offers a unique insight into the acute and chronic state of TBI.


Assuntos
Inteligência Artificial , Traumatismos Craniocerebrais , Humanos , Imageamento por Ressonância Magnética/métodos , Biomarcadores , Hemorragia Cerebral
14.
Neuroimage ; 266: 119814, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36528314

RESUMO

BACKGROUND AND PURPOSE: Early diagnosis of Parkinson's disease (PD) is still a clinical challenge. Most previous studies using manual or semi-automated methods for segmenting the substantia nigra (SN) are time-consuming and, despite raters being well-trained, individual variation can be significant. In this study, we used a template-based, automatic, SN subregion segmentation pipeline to detect the neuromelanin (NM) and iron features in the SN and SN pars compacta (SNpc) derived from a single 3D magnetization transfer contrast (MTC) gradient echo (GRE) sequence in an attempt to develop a comprehensive imaging biomarker that could be used to diagnose PD. MATERIALS AND METHODS: A total of 100 PD patients and 100 age- and sex-matched healthy controls (HCs) were imaged on a 3T scanner. NM-based SN (SNNM) boundaries and iron-based SN (SNQSM) boundaries and their overlap region (representing the SNpc) were delineated automatically using a template-based SN subregion segmentation approach based on quantitative susceptibility mapping (QSM) and NM images derived from the same MTC-GRE sequence. All PD and HC subjects were evaluated for the nigrosome-1 (N1) sign by two raters independently. Receiver Operating Characteristic (ROC) analyses were performed to evaluate the utility of SNNM volume, SNQSM volume, SNpc volume and iron content with a variety of thresholds as well as the N1 sign in diagnosing PD. Correlation analyses were performed to study the relationship between these imaging measures and the clinical scales in PD. RESULTS: In this study, we verified the value of the fully automatic template based midbrain deep gray matter mapping approach in differentiating PD patients from HCs. The automatic segmentation of the SN in PD patients led to satisfactory DICE similarity coefficients and volume ratio (VR) values of 0.81 and 1.17 for the SNNM, and 0.87 and 1.05 for the SNQSM, respectively. For the HC group, the average DICE similarity coefficients and VR values were 0.85 and 0.94 for the SNNM, and 0.87 and 0.96 for the SNQSM, respectively. The SNQSM volume tended to decrease with age for both the PD and HC groups but was more severe for the PD group. For diagnosing PD, the N1 sign performed reasonably well by itself (Area Under the Curve (AUC) = 0.783). However, combining the N1 sign with the other quantitative measures (SNNM volume, SNQSM volume, SNpc volume and iron content) resulted in an improved diagnosis of PD with an AUC as high as 0.947 (using an SN threshold of 50ppb and an NM threshold of 0.15). Finally, the SNQSM volume showed a negative correlation with the MDS-UPDRS III (R2 = 0.1, p = 0.036) and the Hoehn and Yahr scale (R2 = 0.04, p = 0.013) in PD patients. CONCLUSION: In summary, this fully automatic template based deep gray matter mapping approach performs well in the segmentation of the SN and its subregions for not only HCs but also PD patients with SN degeneration. The combination of the N1 sign with other quantitative measures (SNNM volume, SNQSM volume, SNpc volume and iron content) resulted in an AUC of 0.947 and provided a comprehensive set of imaging biomarkers that, potentially, could be used to diagnose PD clinically.


Assuntos
Ferro , Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Substância Negra/diagnóstico por imagem , Biomarcadores
15.
Neuroradiol J ; 36(4): 414-420, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36411595

RESUMO

BACKGROUND AND PURPOSE: To investigate Susceptibility Weighted Imaging (SWI) signal changes in the draining vein of deep-seated arterio-venous malformations (AVMs) following stereotactic radiosurgery (SRS). METHODS AND MATERIALS: This is a retrospective study of 32 patients with deep-seated AVMs who were treated with SRS. Pre-SRS treatment and post-SRS treatment MRI were performed at 6, 12, and 24-month intervals. Deep-seated AVMs were classified based on their anatomical location and venous drainage pattern. AVM nidal volume (cm3) was estimated using the ABC/2 method. AV shunting of the AVM draining veins were graded according to its SWI signal intensity: hyperintense (grade III), mixed signal intensity (grade II), hypointense (grade I) and absent (grade 0). Conventional time-of-flight (TOF)-MRA and contrast enhanced (CE)-MRA sequences were performed to document the patency of the vein. RESULTS: Pre-SRS treatment AVM draining veins were either grade III 18/32 (56%) or grade II 14/32 (44%). Using mixed effects analysis, we demonstrate that each month following the SRS treatment nidal volumes decreased at the rate of 0.51 cm3/per month (CI -0.61 to (-0.40)) p =.00. Following the treatment, there was a clinically significant relationship between the signal and nidal volume: signal 0 corresponded with average nidal volume of 1.81 cm3 (CI 1.40-2.21), signal 1 with nidal volume of 2.06 cm3 (CI 1.69-2.44), signal 2 with nidal volume 2.73 cm3 (CI 2.35-3.11) and signal 3 with nidal volume 3.13 cm3 (CI 2.70-3.56) p = .00. CONCLUSION: Post-SRS AVM draining veins shows a stepwise regression of the SWI signal grades which can be reliably used as a surrogate to monitor the reduction of AV shunting.


Assuntos
Malformações Arteriovenosas Intracranianas , Radiocirurgia , Humanos , Estudos Retrospectivos , Radiocirurgia/métodos , Resultado do Tratamento , Malformações Arteriovenosas Intracranianas/diagnóstico por imagem , Malformações Arteriovenosas Intracranianas/radioterapia , Malformações Arteriovenosas Intracranianas/cirurgia , Imageamento por Ressonância Magnética , Seguimentos
17.
Hum Brain Mapp ; 44(4): 1810-1824, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36502376

RESUMO

The visualization and identification of the deep cerebellar nuclei (DCN) (dentate [DN], interposed [IN] and fastigial nuclei [FN]) are particularly challenging. We aimed to visualize the DCN using quantitative susceptibility mapping (QSM), predict the contrast differences between QSM and T2* weighted imaging, and compare the DCN volume and susceptibility in movement disorder populations and healthy controls (HCs). Seventy-one Parkinson's disease (PD) patients, 39 essential tremor patients, and 80 HCs were enrolled. The PD patients were subdivided into tremor dominant (TD) and postural instability/gait difficulty (PIGD) groups. A 3D strategically acquired gradient echo MR imaging protocol was used for each subject to obtain the QSM data. Regions of interest were drawn manually on the QSM data to calculate the volume and susceptibility. Correlation analysis between the susceptibility and either age or volume was performed and the intergroup differences of the volume and magnetic susceptibility in all the DCN structures were evaluated. For the most part, all the DCN structures were clearly visualized on the QSM data. The susceptibility increased as a function of volume for both the HC group and disease groups in the DN and IN (p < .001) but not the FN (p = .74). Only the volume of the FN in the TD-PD group was higher than that in the HCs (p = .012), otherwise, the volume and susceptibility among these four groups did not differ significantly. In conclusion, QSM provides clear visualization of the DCN structures. The results for the volume and susceptibility of the DCN can be used as baseline references in future studies of movement disorders.


Assuntos
Tremor Essencial , Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico por imagem , Tremor Essencial/diagnóstico por imagem , Núcleos Cerebelares/diagnóstico por imagem , Tremor , Imageamento por Ressonância Magnética/métodos
18.
Eur Radiol ; 33(1): 656-665, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35852578

RESUMO

OBJECTIVES: The current understanding of cerebral waste clearance (CWC) involves cerebrospinal fluid (CSF) participation but lacks convincing evidence for the direct participation of the parenchymal vascular system. The objective of this study was to evaluate the role of the parenchymal vascular system in CSF tracer clearance in rats. METHODS: We used superparamagnetic iron oxide-enhanced susceptibility-weighted imaging (SPIO-SWI) and quantitative susceptibility mapping (QSM) methods to simultaneously study 7 T MRI signal changes in parenchymal veins, arteries, and their corresponding para-vascular spaces in 26 rats, following intra-cisterna magna (ICM) infusion of different CSF tracers (FeREX, Ferumoxytol, Fe-Dextran) to determine the amount of tracer in the artery and vein quantitatively. RESULTS: We observed that the parenchymal venous system participated in CSF tracer clearance following ICM infusion of different MRI tracers with different concentrations of iron. Parenchymal venous participation was more obvious when 75 µg iron was injected. In the parenchymal veins, the relative mean (± SE) value of the susceptibility increased by 13.5 (± 1.0)% at 15 min post-tracer infusion (p < 0.01), and 33.6 (± 6.7)% at 45 min post-tracer infusion (p = 0.01), compared to baseline. In contrast to the parenchymal veins, a negligible amount of CSF tracer entered the parenchymal arteries: 1.3 (± 2.6)% at 15 min post-tracer infusion (p = 0.6), and 12 (± 19)% at 45 min post-tracer infusion (p = 0.5), compared to baseline. CONCLUSIONS: MRI tracers can enter the parenchymal vascular system and more MRI tracers were observed in the cerebral venous than arterial vessels, suggesting the direct participation of parenchymal vascular system in CWC. KEY POINTS: • MRI results revealed that the parenchymal venous system directly participates in cerebrospinal fluid tracer clearance following ICM infusion of MRI tracer. • Different sizes of MRI tracers can enter the parenchymal venous system.


Assuntos
Óxido Ferroso-Férrico , Imageamento por Ressonância Magnética , Animais , Ratos , Imageamento por Ressonância Magnética/métodos , Ferro , Líquido Cefalorraquidiano/diagnóstico por imagem
19.
J Magn Reson Imaging ; 57(2): 337-352, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36017746

RESUMO

MRI has been used to develop biomarkers for movement disorders such as Parkinson disease (PD) and other neurodegenerative disorders with parkinsonism such as progressive supranuclear palsy and multiple system atrophy. One of these imaging biomarkers is neuromelanin (NM), whose integrity can be assessed from its contrast and volume. NM is found mainly in certain brain stem structures, namely, the substantia nigra pars compacta (SNpc), the ventral tegmental area, and the locus coeruleus. Another major biomarker is brain iron, which often increases in concert with NM degeneration. These biomarkers have the potential to improve diagnostic certainty in differentiating between PD and other neurodegenerative disorders similar to PD, as well as provide a better understanding of pathophysiology. Mapping NM in vivo has clinical importance for gauging the premotor phase of PD when there is a greater than 50% loss of dopaminergic SNpc melanized neurons. As a metal ion chelator, NM can absorb iron. When NM is released from neurons, it deposits iron into the intracellular tissues of the SNpc; the result is iron that can be imaged and measured using quantitative susceptibility mapping. An increase of iron also leads to the disappearance of the nigrosome-1 sign, another neuroimage biomarker for PD. Therefore, mapping NM and iron changes in the SNpc are a practical means for improving early diagnosis of PD and in monitoring disease progression. In this review, we discuss the functions and location of NM, how NM-MRI is performed, the automatic mapping of NM and iron content, how NM-related imaging biomarkers can be used to enhance PD diagnosis and differentiate it from other neurodegenerative disorders, and potential advances in NM imaging methods. With major advances currently evolving for rapid imaging and artificial intelligence, NM-related biomarkers are likely to have increasingly important roles for enhancing diagnostic capabilities in PD. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 2.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico por imagem , Inteligência Artificial , Imageamento por Ressonância Magnética/métodos , Biomarcadores , Ferro , Substância Negra/diagnóstico por imagem
20.
Eur Radiol ; 33(1): 606-614, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36044065

RESUMO

OBJECTIVES: To evaluate calcium deposition in the fetal spine in vivo during the second and third trimesters using quantitative susceptibility mapping (QSM). METHODS: Fifty-four pregnant women in their second and third trimesters underwent a 2D multi-echo STrategically Acquired Gradient Echo (STAGE) MR imaging protocol at 3T covering the fetal spine. The first echo data was used for QSM processing. A linear regression model was used to assess the correlation between magnetic susceptibility and gestational age (GA). A paired sample t-test was used to compare the consistency of QSM measurements from each sequence. RESULTS: The magnetic susceptibility of the fetal spine decreased linearly with advancing GA, with a slope of -52.3 parts per billion (ppb)/week and a Pearson correlation coefficient (r) of 0.83 (p < 0.001). In 37 subjects for whom the STAGE local QSM data were available from both flip angles, the average magnetic susceptibility values were -1111 ± 278 ppb and -1081 ± 262 ppb for FA = 8° and FA = 40°, respectively. These means were not statistically different according to a paired sample t-test (p = 0.156). CONCLUSIONS: QSM is a reliable technique for evaluating calcium deposition and bone mineral density of fetal vertebrae. Our results demonstrate an increase in fetal calcium levels as a function of GA. These measures might be able to provide reference values for calcium content in the fetal spine during the second and third trimesters. KEY POINTS: • Calcium deposition and mineralization in the fetal spine, evaluated by vertebral magnetic susceptibility, increased with advancing gestational age. • Our results provide reference values for calcium content in the fetal spine during the second and third trimesters.


Assuntos
Cálcio , Imageamento por Ressonância Magnética , Humanos , Feminino , Gravidez , Imageamento por Ressonância Magnética/métodos , Densidade Óssea , Modelos Lineares , Coluna Vertebral/diagnóstico por imagem , Mapeamento Encefálico/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...