Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(13): 9347-9355, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38520392

RESUMO

Tuning the photophysical properties of iron-based transition-metal complexes is crucial for their employment as photosensitizers in solar energy conversion. For the optimization of these new complexes, a detailed understanding of the excited-state deactivation paths is necessary. Here, we report femtosecond transient mid-IR spectroscopy data on a recently developed octahedral ligand-field enhancing [Fe(dqp)2]2+ (C1) complex with dqp = 2,6-diquinolylpyridine and prototypical [Fe(bpy)3]2+ (C0). By combining mid-IR spectroscopy with quantum chemical DFT calculations, we propose a method for disentangling the 5Q1 and 3T1 multiplicities of the long-lived metal-centered (MC) states, applicable to a variety of metal-organic iron complexes. Our results for C0 align well with the established assignment toward the 5Q1, validating our approach. For C1, we find that deactivation of the initially excited metal-to-ligand charge-transfer state leads to a population of a long-lived MC 5Q1 state. Analysis of transient changes in the mid-IR shows an ultrafast sub 200 fs rearrangement of ligand geometry for both complexes, accompanying the MLCT → MC deactivation. This confirms that the flexibility in the ligand sphere supports the stabilization of high spin states and plays a crucial role in the MLCT lifetime of metal-organic iron complexes.

2.
J Appl Crystallogr ; 56(Pt 3): 903-907, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37284264

RESUMO

A 'catcher' based on a revolving cylindrical collector is described. The simple and inexpensive device reduces free-jet instabilities inherent to high-viscosity extrusion injection, facilitating delivery of microcrystals for serial diffraction X-ray crystallography.

3.
Angew Chem Int Ed Engl ; 62(38): e202305569, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37345993

RESUMO

Two binuclear heteroleptic CuI complexes, namely Cu-NIR1 and Cu-NIR2, bearing rigid chelating diphosphines and π-conjugated 2,5-di(pyridin-2-yl)thiazolo[5,4-d]thiazole as the bis-bidentate ligand are presented. The proposed dinuclearization strategy yields a large bathochromic shift of the emission when compared to the mononuclear counterparts (M1-M2) and enables shifting luminescence into the near-infrared (NIR) region in both solution and solid state, showing emission maximum at ca. 750 and 712 nm, respectively. The radiative process is assigned to an excited state with triplet metal-to-ligand charge transfer (3 MLCT) character as demonstrated by in-depth photophysical and computational investigation. Noteworthy, X-ray analysis of the binuclear complexes unravels two interligand π-π-stacking interactions yielding a doubly locked structure that disfavours flattening of the tetrahedral coordination around the CuI centre in the excited state and maintain enhanced NIR luminescence. No such interaction is present in M1-M2. These findings prompt the successful use of Cu-NIR1 and Cu-NIR2 in NIR light-emitting electrochemical cells (LECs), which display electroluminescence maximum up to 756 nm and peak external quantum efficiency (EQE) of 0.43 %. Their suitability for the fabrication of white-emitting LECs is also demonstrated. To the best of our knowledge, these are the first examples of NIR electroluminescent devices based on earth-abundant CuI emitters.

4.
Angew Chem Int Ed Engl ; 61(35): e202207459, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-35763363

RESUMO

The development of transparent solar cells extends the applications of photovoltaics by offering the opportunity to substitute the gigantic surface coverage of windows by solar panels to produce electricity. Herein, we report a new family of NIR-sensitizers based on pyrrolopyrrole cyanine dyes, particularly efficient for the development of fully transparent and colorless dye-sensitized solar cells since a record efficiency of 2.5 % was achieved with an average visible transmittance (AVT) of 76 % and a color rending index (CRI) of 93.


Assuntos
Corantes , Energia Solar , Eletricidade , Luz Solar
5.
Chemphyschem ; 23(7): e202100659, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35092633

RESUMO

One major challenge of future sustainable photochemistry is to replace precious and rare transition metals in applications such as energy conversion or electroluminescence by earth-abundant, cheap, and recyclable materials. This involves using coordination complexes of first row transition metals such as Cu, Cr, or Mn. In the case of iron, which is attractive due to its natural abundance, fundamental limitations imposed by the small ligand field splitting energy have recently been overcome. In this review article, we briefly summarize the present knowledge and understanding of the structure-property relationships of Fe(II) and Fe(III) complexes with excited state lifetimes in the nanosecond range. However, our main focus is to examine to which extent the ultrafast spectroscopy methods used so far provided insight into the excited state structure and the photo-induced dynamics of these complexes. Driven by the main question of how to spectroscopically, i. e. in energy and concentration, differentiate the population of ligand- vs. metal-centered states, the hitherto less exploited ultrafast vibrational spectroscopy is suggested to provide valuable complementary insights.


Assuntos
Complexos de Coordenação , Compostos Férricos , Complexos de Coordenação/química , Compostos Ferrosos/química , Estrutura Molecular , Análise Espectral
6.
JACS Au ; 1(4): 409-426, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-34467304

RESUMO

Most photovoltaic (PV) technologies are opaque to maximize visible light absorption. However, see-through solar cells open additional perspectives for PV integration. Looking beyond maximizing visible light harvesting, this work considers the human eye photopic response to optimize a selective near-infrared sensitizer based on a polymethine cyanine structure (VG20-C x ) to render dye-sensitized solar cells (DSSCs) fully transparent and colorless. This peculiarity was achieved by conferring to the dye the ability to strongly and sharply absorb beyond 800 nm (S0-S1 transition) while rejecting the upper S0-S n contributions far in the blue where the human retina is poorly sensitive. When associated with an aggregation-free anatase TiO2 photoanode, the selective NIR-DSSC can display 3.1% power conversion efficiency, up to 76% average visible transmittance (AVT), a value approaching the 78% AVT value of a standard double glazing window while reaching a color rendering index (CRI) of 92.1%. The ultrafast and fast charge transfer processes are herein discussed, clarifying the different relaxation channels from the dye monomer excited states and highlighting the limiting steps to provide future directions to enhance the performances of this nonintrusive NIR-DSSC technology.

7.
Molecules ; 25(24)2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33348914

RESUMO

The control of ligand-field splitting in iron (II) complexes is critical to slow down the metal-to-ligand charge transfer (MLCT)-excited states deactivation pathways. The gap between the metal-centered states is maximal when the coordination sphere of the complex approaches an ideal octahedral geometry. Two new iron(II) complexes (C1 and C2), prepared from pyridylNHC and pyridylquinoline type ligands, respectively, have a near-perfect octahedral coordination of the metal. The photophysics of the complexes have been further investigated by means of ultrafast spectroscopy and TD-DFT modeling. For C1, it is shown that-despite the geometrical improvement-the excited state deactivation is faster than for the parent pseudo-octahedral C0 complex. This unexpected result is due to the increased ligand flexibility in C1 that lowers the energetic barrier for the relaxation of 3MLCT into the 3MC state. For C2, the effect of the increased ligand field is not strong enough to close the prominent deactivation channel into the metal-centered quintet state, as for other Fe-polypyridine complexes.


Assuntos
Compostos Ferrosos/química , Compostos Ferrosos/síntese química , Ferro/química , Termodinâmica , Cristalografia por Raios X , Teoria da Densidade Funcional , Ligantes , Estrutura Molecular , Difração de Raios X
8.
ACS Appl Mater Interfaces ; 12(34): 38054-38060, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32803963

RESUMO

Hybrid perovskites are known as electrically polarizable semiconductors based on theoretical prediction and experimental information. Here we show the light polarization effects on the photovoltaic actions in perovskite solar cells by optically generating directional and random electronic transition dipoles within asymmetric and symmetric unit structures. In an asymmetric tetragonal unit structure, we observed the stripes with different orientations onto perovskite grains and that the randomly polarized photoexcitation can generate a higher photocurrent (Jsc) by 6.5 ± 0.5% as compared to the linearly polarized photoexcitation at same intensity in the hysteresis-free perovskite solar cells [ITO/PEDOT:PSS/MAPbI3/PC61BM/PEI/Ag]. Clearly, switching the photoexcitation between linear and random polarizations leads to a ΔJsc, which provides an experimental indication that all-directional and one-directional transition dipoles generate higher and lower photocurrents in organic-inorganic hybrid perovskites (MAPbI3) with an asymmetric tetragonal unit structure. This implies that all-directional and one-directional transition dipoles develop stronger and weaker dissociative interactions, consequently giving rise to more and less dissociation toward generating photocurrent. This is confirmed by the experimental observation that the ΔJsc almost disappears when the temperature increases up to 55 °C, where the asymmetric tetragonal structure is changed to a symmetric cubic structure. Furthermore, the ΔJsc is shown to decrease with increasing light intensity. This indicates that the electronic transition dipoles encounter a polarization relaxation caused by mutual interaction. We show that the polarization relaxation time in MAPbI3 is comparable to exciton dissociation time (∼ps). This presents the necessary condition to demonstrate light polarization effects of photovoltaic actions in perovskite solar cells.

9.
Nat Methods ; 17(7): 681-684, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32451477

RESUMO

Time-resolved crystallography with X-ray free-electron lasers enables structural characterization of light-induced reactions on ultrafast timescales. To be biologically and chemically relevant, such studies must be carried out in an appropriate photoexcitation regime to avoid multiphoton artifacts, a common issue in recent studies. We describe numerical and experimental approaches to determine how many photons are needed for single-photon excitation in microcrystals, taking into account losses by scattering.


Assuntos
Cristalografia por Raios X/métodos , Fótons , Radiação Eletromagnética , Lasers , Luz , Espalhamento de Radiação
10.
J Phys Chem Lett ; 11(9): 3647-3652, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32302144

RESUMO

This paper reports an extremely long spin relaxation time of optically polarized light-emitting states at room temperature in quasi-2D perovskites [(PEA)2(MA)4Pb5Br16 with n = 5], when the long-range orbit-orbit interaction between excited states is developed through orbital polarization. Our studies found that the quasi-2D perovskite [(PEA)2(MA)4Pb5Br16 with n = 5] demonstrates a long-range orbit-orbit interaction between excited states to conserve the spins of optically polarized light-emitting states, identified by the positive change on photoluminescence intensity (+ΔPL) in steady state upon switching the photoexcitation from linear to circular polarization. Meanwhile, the PL circular polarization (σ+σ+ - σ+σ-) can maintain in nanosecond under fixed photoexcitation (σ+). In contrast, the 2D/3D mixed perovskite (n > 5) shows a short-range orbit-orbit interaction between excited states through orbital magnetic dipoles, identified by the -ΔPL by switching from linear to circular photoexcitation. At the same time, the spin lifetime of light-emitting states becomes undetectable.

11.
Faraday Discuss ; 221(0): 299-321, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31544177

RESUMO

UV-Vis transient absorption (TA) spectroscopy is used to carry out a systematic investigation of the ultrafast C[double bond, length as m-dash]C double photoisomerization dynamics and quantum yield of each isomer of a set of six chromophores based on the same retinal-inspired, indanylidene pyrrolinium (IP) molecular framework. All compounds undergo a sub-picosecond photoisomerization, and can be categorized within two photoisomerization scenarios. Scenario I corresponds to compounds which display the signatures of a vibrationally coherent reactive motion through the conical intersection, with different degrees of vibrational coherence. Qualitatively distinct TA signatures are observed for other compounds which are therefore proposed to obey scenario II, referring to an intermediate regime between scenario I and a thermally-equilibrated, fully stochastic photoreaction. Remarkably, the photoisomerization scenario is observed to correlate with the computed distortion from planarity of the ground state equilibrium geometry, reflecting the torsional strain that would be released after photoexcitation. The most planar compounds - i.e. those having a C[double bond, length as m-dash]C double bond pre-twist of less than 10° - obey scenario II, while compounds obeying scenario I have larger pre-twists. The most pre-twisted compounds (>15°) show pronounced oscillatory signatures of a reaction-induced, low-frequency vibrational wavepacket observed in the S0 photoproduct and assigned to the torsion mode of the reaction coordinate, thus mimicking the vibrationally coherent photoisomerization dynamics of the rhodopsin protein. Importantly, the systematic comparison of all photoisomerization quantum yields does however not reveal any correlation with observables such as excited state life time, vibrational coherence, absorption wavelengths or degree of pre-twisting.

12.
Nat Commun ; 10(1): 3177, 2019 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-31320619

RESUMO

Bacteriorhodopsin (bR) is a light-driven proton pump. The primary photochemical event upon light absorption is isomerization of the retinal chromophore. Here we used time-resolved crystallography at an X-ray free-electron laser to follow the structural changes in multiphoton-excited bR from 250 femtoseconds to 10 picoseconds. Quantum chemistry and ultrafast spectroscopy were used to identify a sequential two-photon absorption process, leading to excitation of a tryptophan residue flanking the retinal chromophore, as a first manifestation of multiphoton effects. We resolve distinct stages in the structural dynamics of the all-trans retinal in photoexcited bR to a highly twisted 13-cis conformation. Other active site sub-picosecond rearrangements include correlated vibrational motions of the electronically excited retinal chromophore, the surrounding amino acids and water molecules as well as their hydrogen bonding network. These results show that this extended photo-active network forms an electronically and vibrationally coupled system in bR, and most likely in all retinal proteins.


Assuntos
Bacteriorodopsinas/química , Halobacterium salinarum/metabolismo , Retinaldeído/química , Cristalografia , Isomerismo , Luz , Fótons , Conformação Proteica , Análise Espectral , Água/química
13.
Photochem Photobiol Sci ; 18(9): 2259-2269, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31347633

RESUMO

A molecular motor potentially performing a continuous unidirectional rotation is studied by a multidisciplinary approach including organic synthesis, transient spectroscopy and excited state trajectory calculations. A stereogenic center was introduced in the N-alkylated indanylidene-pyrroline Schiff base framework of a previously investigated light-driven molecular switch in order to achieve the unidirectional C[double bond, length as m-dash]C rotary motion typical of Feringa's motor. Here we report that the specific substitution pattern of the designed chiral molecule must critically determine the unidirectional efficiency of the light-induced rotary motion. More specifically, we find that a stereogenic center containing a methyl group and a hydrogen atom as substituents does not create a differential steric effect large enough to fully direct the motion in either the clockwise or counterclockwise direction especially along the E→Z coordinate. However, due to the documented ultrafast character and electronic circular dichroism activity of the investigated system, we find that it provides the basis for development of a novel generation of rotary motors with a biomimetic framework and operating on a picosecond time scale.

14.
Dalton Trans ; 48(29): 10915-10926, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31149683

RESUMO

Ligand field enhancing N-heterocyclic carbene (NHC) ligands were recently shown to prevent photo-induced spin crossover in Fe(ii) complexes due to their intricate effects on the electronic excited state structure. Due to their pico- to nanosecond lifetimes, these complexes are now good candidates for photo-sensitizing applications. Herein we report the synthesis and photophysical characterization of a new family of homoleptic Fe(ii) complexes with C^N^C ligands involving diazines as the central N-heteroaromatic ligand. For these four carbene bond complexes, ultrafast transient absorption spectroscopy revealed a significant improvement of the excited-state lifetime. A record 32 ps lifetime was measured for a complex bearing a ligand combining a π-deficient pyrazine nucleus and a benzimidazolylidene as NHC. When compared to other azine-based ligands investigated, we argue that the lifetimes are modulated by a small excited state barrier expressing the ability of the ligand to reach the Fe-N distance needed for internal conversion to the ground state.

15.
Inorg Chem ; 58(8): 5069-5081, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30950264

RESUMO

The control of photophysical properties of iron complexes and especially of their excited states decay is a great challenge in the search for sustainable alternatives to noble metals in photochemical applications. Herein we report the synthesis and investigations of the photophysics of mer and fac iron complexes bearing bidentate pyridyl-NHC ligands, coordinating the iron with three ligand-field-enhancing carbene bonds. Ultrafast transient absorption spectroscopy reveals two distinct excited state populations for both mer and fac forms, ascribed to the populations of the T1 and the T2 states, respectively, which decay to the ground state via parallel pathways. We find 3-4 ps and 15-20 ps excited-state lifetimes, with respective amplitudes depending on the isomer. The longer lifetime exceeds the one reported for iron complexes with tridentate ligands analogues involving four iron-carbene bonds. By combining experimental and computational results, a mechanism based on the differential trapping of the triplet states in spin-crossover regions is proposed for the first time to explain the impact of the fac/ mer isomerism on the overall excited-state lifetimes. Our results clearly highlight the impact of bidentate pyridyl-NHC ligands on the photophysics of iron complexes, especially the paramount role of fac/ mer isomerism in modulating the overall decay process, which can be potentially exploited in the design of new Fe(II)-based photoactive compounds.

16.
J Am Chem Soc ; 141(1): 262-271, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30532962

RESUMO

The engineering of microbial rhodopsins with enhanced fluorescence is of great importance in the expanding field of optogenetics. Here we report the discovery of two mutants (W76S/Y179F and L83Q) of a sensory rhodopsin from the cyanobacterium Anabaena PCC7120 with opposite fluorescence behavior. In fact, while W76S/Y179F displays, with respect to the wild-type protein, a nearly 10-fold increase in red-light emission, the second is not emissive. Thus, the W76S/Y179F, L83Q pair offers an unprecedented opportunity for the investigation of fluorescence enhancement in microbial rhodopsins, which is pursued by combining transient absorption spectroscopy and multiconfigurational quantum chemistry. The results of such an investigation point to an isomerization-blocking electronic effect as the direct cause of instantaneous (subpicosecond) fluorescence enhancement.


Assuntos
Anabaena/metabolismo , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Engenharia de Proteínas , Rodopsinas Microbianas/química , Rodopsinas Microbianas/metabolismo , Transporte de Elétrons , Modelos Moleculares , Proteínas Mutantes/genética , Conformação Proteica , Rodopsinas Microbianas/genética , Espectrometria de Fluorescência
17.
Inorg Chem ; 57(16): 10431-10441, 2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-30063338

RESUMO

The synthesis and the steady-state absorption spectrum of a new pyridine-imidazolylidene Fe(II) complex (Fe-NHC) are presented. A detailed mechanism of the triplet metal-to-ligand charge-transfer states decay is provided on the basis of minimum energy path (MEP) calculations used to connect the lowest-lying singlet, triplet, and quintet state minima. The competition between the different decay pathways involved in the photoresponse is assessed by analyzing the shapes of the obtained potential energy surfaces. A qualitative difference between facial ( fac) and meridional ( mer) isomers' potential energy surface (PES) topologies is evidenced for the first time in iron-based complexes. Indeed, the mer complex shows a steeper triplet path toward the corresponding 3MC minimum, which lies at a lower energy as compared to the fac isomer, thus pointing to a faster triplet decay of the former. Furthermore, while a major role of the metal-centered quintet state population from the triplet 3MC region is excluded, we identify the enlargement of iron-nitrogen bonds as the main normal modes driving the excited-state decay.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...