Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochem Soc Trans ; 41(1): 213-7, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23356285

RESUMO

The TSHR (thyrotropin receptor) is activated endogenously by the large hormone thyrotropin and activated pathologically by auto-antibodies. Both activate and bind at the extracellular domain. Recently, SMLs (small-molecule ligands) have been identified, which bind in an allosteric binding pocket within the transmembrane domain. Modelling driven site-directed mutagenesis of amino acids lining this pocket led to the delineation of activation and inactivation sensitive residues. Modified residues showing CAMs (constitutively activating mutations) indicate signalling-sensitive positions and mark potential trigger points for agonists. Silencing mutations lead to an impairment of basal activity and mark contact points for antagonists. Mapping these residues on to a structural model of TSHR indicates locations where an SML may switch the receptor to an inactive or active conformation. In the present article, we report the effects of SMLs on these signalling-sensitive amino acids at the TSHR. Surprisingly, the antagonistic effect of SML compound 52 was reversed to an agonistic effect, when tested at the CAM Y667A. Switching agonism to antagonism and the reverse by changing either SMLs or residues covering the binding pocket provides detailed knowledge about discriminative pharmacophores. It prepares the basis for rational optimization of new high-affinity antagonists to interfere with the pathogenic activation of the TSHR.


Assuntos
Sítio Alostérico , Receptores da Tireotropina/metabolismo , Sítios de Ligação , Modelos Moleculares , Receptores da Tireotropina/química
2.
J Biol Chem ; 286(29): 25859-71, 2011 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-21586576

RESUMO

Transmembrane helices (TMHs) 5 and 6 are known to be important for signal transduction by G-protein-coupled receptors (GPCRs). Our aim was to characterize the interface between TMH5 and TMH6 of the thyrotropin receptor (TSHR) to gain molecular insights into aspects of signal transduction and regulation. A proline at TMH5 position 5.50 is highly conserved in family A GPCRs and causes a twist in the helix structure. Mutation of the TSHR-specific alanine (Ala-5935·5°) at this position to proline resulted in a 20-fold reduction of cell surface expression. This indicates that TMH5 in the TSHR might have a conformation different from most other family A GPCRs by forming a regular α-helix. Furthermore, linking our own and previous data from directed mutagenesis with structural information led to suggestions of distinct pairs of interacting residues between TMH5 and TMH6 that are responsible for stabilizing either the basal or the active state. Our insights suggest that the inactive state conformation is constrained by a core set of polar interactions among TMHs 2, 3, 6, and 7 and in contrast that the active state conformation is stabilized mainly by non-polar interactions between TMHs 5 and 6. Our findings might be relevant for all family A GPCRs as supported by a statistical analysis of residue properties between the TMHs of a vast number of GPCR sequences.


Assuntos
Membrana Celular/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Receptores da Tireotropina/química , Receptores da Tireotropina/metabolismo , Transdução de Sinais , Animais , Sequência Conservada , AMP Cíclico/metabolismo , Células HEK293 , Humanos , Fosfatos de Inositol/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Estrutura Secundária de Proteína , Receptores da Tireotropina/genética
3.
Cell Mol Life Sci ; 68(1): 159-67, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20652618

RESUMO

The thyrotropin receptor (TSHR) exhibits elevated cAMP signaling in the basal state and becomes fully activated by thyrotropin. Previously we presented evidence that small-molecule ligands act allosterically within the transmembrane region in contrast to the orthosteric extracellular hormone-binding sites. Our goal in this study was to identify positions that surround the allosteric pocket and that are sensitive for inactivation of TSHR. Homology modeling combined with site-directed mutagenesis and functional characterization revealed seven mutants located in the allosteric binding site that led to a decrease of basal cAMP signaling activity. The majority of these silencing mutations, which constrain the TSHR in an inactive conformation, are found in two clusters when mapped onto the 3D structural model. We suggest that the amino acid positions identified herein are indicating locations where small-molecule antagonists, both neutral antagonists and inverse agonists, might interfere with active TSHR conformations.


Assuntos
Mutação , Receptores da Tireotropina/genética , Transdução de Sinais/genética , Sítios de Ligação , AMP Cíclico/metabolismo , Células HEK293 , Humanos , Ligantes , Modelos Moleculares , Estrutura Terciária de Proteína/genética , Receptores da Tireotropina/química , Receptores da Tireotropina/fisiologia
4.
FASEB J ; 24(7): 2347-54, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20179143

RESUMO

The thyrotropin receptor [thyroid-stimulating hormone receptor (TSHR)], a G-protein-coupled receptor (GPCR), is endogenously activated by thyrotropin, which binds to the extracellular region of the receptor. We previously identified a low-molecular-weight (LMW) agonist of the TSHR and predicted its allosteric binding pocket within the receptor's transmembrane domain. Because binding of the LMW agonist probably disrupts interactions or leads to formation of new interactions among amino acid residues surrounding the pocket, we tested whether mutation of residues at these positions would lead to constitutive signaling activity. Guided by molecular modeling, we performed site-directed mutagenesis of 24 amino acids in this spatial region, followed by functional characterization of the mutant receptors in terms of expression and signaling, measured as cAMP accumulation. We found that mutations V421I, Y466A, T501A, L587V, M637C, M637W, S641A, Y643F, L645V, and Y667A located in several helices exhibit constitutive activity. Of note is mutation M637W at position 6.48 in transmembrane helix 6, which has a significant effect on the interaction of the receptor with the LMW agonist. In summary, we found that a high proportion of residues in several helices surrounding the allosteric binding site of LMW ligands in the TSHR when mutated lead to constitutively active receptors. Our findings of signaling-sensitive residues in this region of the transmembrane bundle may be of general importance as this domain appears to be evolutionarily retained among GPCRs.


Assuntos
Sítio Alostérico/genética , Aminoácidos/metabolismo , Receptores da Tireotropina/metabolismo , AMP Cíclico/análise , Ligantes , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , Receptores da Tireotropina/química , Receptores da Tireotropina/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA