Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Clin Invest ; 132(24)2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36194491

RESUMO

People with kidney disease are disproportionately affected by atherosclerosis for unclear reasons. Soluble urokinase plasminogen activator receptor (suPAR) is an immune-derived mediator of kidney disease, levels of which are strongly associated with cardiovascular outcomes. We assessed suPAR's pathogenic involvement in atherosclerosis using epidemiologic, genetic, and experimental approaches. We found serum suPAR levels to be predictive of coronary artery calcification and cardiovascular events in 5,406 participants without known coronary disease. In a genome-wide association meta-analysis including over 25,000 individuals, we identified a missense variant in the plasminogen activator, urokinase receptor (PLAUR) gene (rs4760), confirmed experimentally to lead to higher suPAR levels. Mendelian randomization analysis in the UK Biobank using rs4760 indicated a causal association between genetically predicted suPAR levels and atherosclerotic phenotypes. In an experimental model of atherosclerosis, proprotein convertase subtilisin/kexin-9 (Pcsk9) transfection in mice overexpressing suPAR (suPARTg) led to substantially increased atherosclerotic plaques with necrotic cores and macrophage infiltration compared with those in WT mice, despite similar cholesterol levels. Prior to induction of atherosclerosis, aortas of suPARTg mice excreted higher levels of CCL2 and had higher monocyte counts compared with WT aortas. Aortic and circulating suPARTg monocytes exhibited a proinflammatory profile and enhanced chemotaxis. These findings characterize suPAR as a pathogenic factor for atherosclerosis acting at least partially through modulation of monocyte function.


Assuntos
Aterosclerose , Receptores de Ativador de Plasminogênio Tipo Uroquinase , Animais , Camundongos , Aterosclerose/genética , Biomarcadores , Estudo de Associação Genômica Ampla , Monócitos , Pró-Proteína Convertase 9 , Receptores de Ativador de Plasminogênio Tipo Uroquinase/genética , Fatores de Risco , Ativador de Plasminogênio Tipo Uroquinase , Humanos
2.
Kidney Int Rep ; 7(9): 2047-2058, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36090499

RESUMO

Introduction: Monogenic causes in over 300 kidney-associated genes account for approximately 12% of end stage kidney disease (ESKD) cases. Advances in sequencing and large customized panels enable the noninvasive diagnosis of monogenic kidney disease at relatively low cost, thereby allowing for more precise management for patients and their families. A major challenge is interpreting rare variants, many of which are classified as variants of unknown significance (VUS). We present a framework in which we thoroughly evaluated and provided evidence of pathogenicity for HNF1B-p.Arg303His, a VUS returned from clinical diagnostic testing for a kidney transplant candidate. Methods: A blueprint was designed by a multidisciplinary team of clinicians, molecular biologists, and diagnostic geneticists. The blueprint included using a health system-based cohort with genetic and clinical information to perform deep phenotyping of VUS heterozygotes to identify the candidate VUS and rule out other VUS, examination of existing genetic databases, as well as functional testing. Results: Our approach demonstrated evidence for pathogenicity for HNF1B-p.Arg303His by showing similar burden of kidney manifestations in this variant to known HNF1B pathogenic variants, and greater burden compared to noncarriers. Conclusion: Determination of a molecular diagnosis for the example family allows for proper surveillance and management of HNF1B-related manifestations such as kidney disease, diabetes, and hypomagnesemia with important implications for safe living-related kidney donation. The candidate gene-variant pair also allows for clinical biomarker testing for aberrations of linked pathways. This working model may be applicable to other diseases of genetic etiology.

3.
Nat Commun ; 13(1): 4844, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35999217

RESUMO

Body fat distribution is a major, heritable risk factor for cardiometabolic disease, independent of overall adiposity. Using exome-sequencing in 618,375 individuals (including 160,058 non-Europeans) from the UK, Sweden and Mexico, we identify 16 genes associated with fat distribution at exome-wide significance. We show 6-fold larger effect for fat-distribution associated rare coding variants compared with fine-mapped common alleles, enrichment for genes expressed in adipose tissue and causal genes for partial lipodystrophies, and evidence of sex-dimorphism. We describe an association with favorable fat distribution (p = 1.8 × 10-09), favorable metabolic profile and protection from type 2 diabetes (~28% lower odds; p = 0.004) for heterozygous protein-truncating mutations in INHBE, which encodes a circulating growth factor of the activin family, highly and specifically expressed in hepatocytes. Our results suggest that inhibin ßE is a liver-expressed negative regulator of adipose storage whose blockade may be beneficial in fat distribution-associated metabolic disease.


Assuntos
Diabetes Mellitus Tipo 2 , Subunidades beta de Inibinas/genética , Tecido Adiposo , Adiposidade/genética , Diabetes Mellitus Tipo 2/genética , Exoma/genética , Humanos , Mutação
4.
N Engl J Med ; 387(4): 332-344, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35939579

RESUMO

BACKGROUND: Exome sequencing in hundreds of thousands of persons may enable the identification of rare protein-coding genetic variants associated with protection from human diseases like liver cirrhosis, providing a strategy for the discovery of new therapeutic targets. METHODS: We performed a multistage exome sequencing and genetic association analysis to identify genes in which rare protein-coding variants were associated with liver phenotypes. We conducted in vitro experiments to further characterize associations. RESULTS: The multistage analysis involved 542,904 persons with available data on liver aminotransferase levels, 24,944 patients with various types of liver disease, and 490,636 controls without liver disease. We found that rare coding variants in APOB, ABCB4, SLC30A10, and TM6SF2 were associated with increased aminotransferase levels and an increased risk of liver disease. We also found that variants in CIDEB, which encodes a structural protein found in hepatic lipid droplets, had a protective effect. The burden of rare predicted loss-of-function variants plus missense variants in CIDEB (combined carrier frequency, 0.7%) was associated with decreased alanine aminotransferase levels (beta per allele, -1.24 U per liter; 95% confidence interval [CI], -1.66 to -0.83; P = 4.8×10-9) and with 33% lower odds of liver disease of any cause (odds ratio per allele, 0.67; 95% CI, 0.57 to 0.79; P = 9.9×10-7). Rare coding variants in CIDEB were associated with a decreased risk of liver disease across different underlying causes and different degrees of severity, including cirrhosis of any cause (odds ratio per allele, 0.50; 95% CI, 0.36 to 0.70). Among 3599 patients who had undergone bariatric surgery, rare coding variants in CIDEB were associated with a decreased nonalcoholic fatty liver disease activity score (beta per allele in score units, -0.98; 95% CI, -1.54 to -0.41 [scores range from 0 to 8, with higher scores indicating more severe disease]). In human hepatoma cell lines challenged with oleate, CIDEB small interfering RNA knockdown prevented the buildup of large lipid droplets. CONCLUSIONS: Rare germline mutations in CIDEB conferred substantial protection from liver disease. (Funded by Regeneron Pharmaceuticals.).


Assuntos
Proteínas Reguladoras de Apoptose , Mutação em Linhagem Germinativa , Hepatopatias , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Predisposição Genética para Doença/genética , Predisposição Genética para Doença/prevenção & controle , Humanos , Fígado/metabolismo , Hepatopatias/genética , Hepatopatias/metabolismo , Hepatopatias/prevenção & controle , Transaminases/genética , Sequenciamento do Exoma
5.
Nat Genet ; 54(6): 761-771, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35654975

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is a growing cause of chronic liver disease. Using a proxy NAFLD definition of chronic elevation of alanine aminotransferase (cALT) levels without other liver diseases, we performed a multiancestry genome-wide association study (GWAS) in the Million Veteran Program (MVP) including 90,408 cALT cases and 128,187 controls. Seventy-seven loci exceeded genome-wide significance, including 25 without prior NAFLD or alanine aminotransferase associations, with one additional locus identified in European American-only and two in African American-only analyses (P < 5 × 10-8). External replication in histology-defined NAFLD cohorts (7,397 cases and 56,785 controls) or radiologic imaging cohorts (n = 44,289) replicated 17 single-nucleotide polymorphisms (SNPs) (P < 6.5 × 10-4), of which 9 were new (TRIB1, PPARG, MTTP, SERPINA1, FTO, IL1RN, COBLL1, APOH and IFI30). Pleiotropy analysis showed that 61 of 77 multiancestry and all 17 replicated SNPs were jointly associated with metabolic and/or inflammatory traits, revealing a complex model of genetic architecture. Our approach integrating cALT, histology and imaging reveals new insights into genetic liability to NAFLD.


Assuntos
Estudo de Associação Genômica Ampla , Hepatopatia Gordurosa não Alcoólica , Alanina Transaminase , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Lipase/genética , Proteínas de Membrana/genética , Hepatopatia Gordurosa não Alcoólica/genética , Polimorfismo de Nucleotídeo Único/genética , Proteínas Serina-Treonina Quinases/antagonistas & inibidores
6.
JAMA Netw Open ; 5(3): e223849, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35333364

RESUMO

Importance: Observational studies have consistently proposed cardiovascular benefits associated with light alcohol consumption, while recent genetic analyses (ie, mendelian randomization studies) have suggested a possible causal link between alcohol intake and increased risk of cardiovascular disease. However, traditional approaches to genetic epidemiology assume a linear association and thus have not fully evaluated dose-response estimates of risk across different levels of alcohol intake. Objectives: To assess the association of habitual alcohol intake with cardiovascular disease risk and to evaluate the direction and relative magnitude of cardiovascular risk associated with different amounts of alcohol consumption. Design, Setting, and Participants: This cohort study used the UK Biobank (2006-2010, follow-up until 2016) to examine confounding in epidemiologic associations between alcohol intake and cardiovascular diseases. Using both traditional (ie, linear) and nonlinear mendelian randomization, potential associations between alcohol consumption and cardiovascular diseases (eg, hypertension and coronary artery disease) as well as corresponding association shapes were assessed. Data analysis was conducted from July 2019 to January 2022. Exposures: Genetic predisposition to alcohol intake. Main Outcomes and Measures: The association between alcohol consumption and cardiovascular diseases, including hypertension, coronary artery disease, myocardial infarction, stroke, heart failure, and atrial fibrillation. Results: This study included 371 463 participants (mean [SD] age, 57.0 [7.9] years; 172 400 [46%] men), who consumed a mean (SD) 9.2 (10.6) standard drinks per week. Overall, 121 708 participants (33%) had hypertension. Light to moderate alcohol consumption was associated with healthier lifestyle factors, adjustment for which attenuated the cardioprotective epidemiologic associations with modest intake. In linear mendelian randomization analyses, a 1-SD increase in genetically predicted alcohol consumption was associated with 1.3-fold (95% CI, 1.2-1.4) higher risk of hypertension (P < .001) and 1.4-fold (95% CI, 1.1-1.8) higher risk of coronary artery disease (P = .006). Nonlinear mendelian randomization analyses suggested nonlinear associations between alcohol consumption and both hypertension and coronary artery disease: light alcohol intake was associated with minimal increases in cardiovascular risk, whereas heavier consumption was associated with exponential increases in risk of both clinical and subclinical cardiovascular disease. Conclusions and Relevance: In this cohort study, coincident, favorable lifestyle factors attenuated the observational benefits of modest alcohol intake. Genetic epidemiology suggested that alcohol consumption of all amounts was associated with increased cardiovascular risk, but marked risk differences exist across levels of intake, including those accepted by current national guidelines.


Assuntos
Doenças Cardiovasculares , Doença da Artéria Coronariana , Hipertensão , Consumo de Bebidas Alcoólicas/efeitos adversos , Consumo de Bebidas Alcoólicas/epidemiologia , Doenças Cardiovasculares/etiologia , Estudos de Coortes , Doença da Artéria Coronariana/complicações , Humanos , Hipertensão/complicações , Masculino , Pessoa de Meia-Idade
7.
Cell Genom ; 1(3)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34957434

RESUMO

Excess liver fat, called hepatic steatosis, is a leading risk factor for end-stage liver disease and cardiometabolic diseases but often remains undiagnosed in clinical practice because of the need for direct imaging assessments. We developed an abdominal MRI-based machine-learning algorithm to accurately estimate liver fat (correlation coefficients, 0.97-0.99) from a truth dataset of 4,511 middle-aged UK Biobank participants, enabling quantification in 32,192 additional individuals. 17% of participants had predicted liver fat levels indicative of steatosis, and liver fat could not have been reliably estimated based on clinical factors such as BMI. A genome-wide association study of common genetic variants and liver fat replicated three known associations and identified five newly associated variants in or near the MTARC1, ADH1B, TRIB1, GPAM, and MAST3 genes (p < 3 × 10-8). A polygenic score integrating these eight genetic variants was strongly associated with future risk of chronic liver disease (hazard ratio > 1.32 per SD score, p < 9 × 10-17). Rare inactivating variants in the APOB or MTTP genes were identified in 0.8% of individuals with steatosis and conferred more than 6-fold risk (p < 2 × 10-5), highlighting a molecular subtype of hepatic steatosis characterized by defective secretion of apolipoprotein B-containing lipoproteins. We demonstrate that our imaging-based machine-learning model accurately estimates liver fat and may be useful in epidemiological and genetic studies of hepatic steatosis.

8.
Cell Rep Med ; 2(11): 100437, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34841290

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a complex disease linked to several chronic diseases. We aimed at identifying genetic variants associated with NAFLD and evaluating their functional consequences. We performed a genome-wide meta-analysis of 4 cohorts of electronic health record-documented NAFLD in participants of European ancestry (8,434 cases and 770,180 controls). We identify 5 potential susceptibility loci for NAFLD (located at or near GCKR, TR1B1, MAU2/TM6SF2, APOE, and PNPLA3). We also report a potentially causal effect of lower LPL expression in adipose tissue on NAFLD susceptibility and an effect of the FTO genotype on NAFLD. Positive genetic correlations between NAFLD and cardiometabolic diseases and risk factors such as body fat accumulation/distribution, lipoprotein-lipid levels, insulin resistance, and coronary artery disease and negative genetic correlations with parental lifespan, socio-economic status, and acetoacetate levels are observed. This large GWAS meta-analysis reveals insights into the genetic architecture of NAFLD.


Assuntos
Registros Eletrônicos de Saúde , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Hepatopatia Gordurosa não Alcoólica/genética , Variação Genética , Humanos , Desequilíbrio de Ligação/genética , Lipase Lipoproteica/genética , Obesidade/genética , Fenótipo
10.
Nucleic Acids Res ; 49(D1): D1541-D1547, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33174596

RESUMO

The mammalian mitochondrial proteome is under dual genomic control, with 99% of proteins encoded by the nuclear genome and 13 originating from the mitochondrial DNA (mtDNA). We previously developed MitoCarta, a catalogue of over 1000 genes encoding the mammalian mitochondrial proteome. This catalogue was compiled using a Bayesian integration of multiple sequence features and experimental datasets, notably protein mass spectrometry of mitochondria isolated from fourteen murine tissues. Here, we introduce MitoCarta3.0. Beginning with the MitoCarta2.0 inventory, we performed manual review to remove 100 genes and introduce 78 additional genes, arriving at an updated inventory of 1136 human genes. We now include manually curated annotations of sub-mitochondrial localization (matrix, inner membrane, intermembrane space, outer membrane) as well as assignment to 149 hierarchical 'MitoPathways' spanning seven broad functional categories relevant to mitochondria. MitoCarta3.0, including sub-mitochondrial localization and MitoPathway annotations, is freely available at http://www.broadinstitute.org/mitocarta and should serve as a continued community resource for mitochondrial biology and medicine.


Assuntos
Bases de Dados de Proteínas , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Anotação de Sequência Molecular , Proteoma/metabolismo , Animais , Teorema de Bayes , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Conjuntos de Dados como Assunto , Humanos , Internet , Aprendizado de Máquina , Espectrometria de Massas , Camundongos , Mitocôndrias/genética , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/classificação , Proteínas Mitocondriais/genética , Proteoma/classificação , Proteoma/genética , Software
11.
PLoS Genet ; 16(4): e1008629, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32282858

RESUMO

Analyzing 12,361 all-cause cirrhosis cases and 790,095 controls from eight cohorts, we identify a common missense variant in the Mitochondrial Amidoxime Reducing Component 1 gene (MARC1 p.A165T) that associates with protection from all-cause cirrhosis (OR 0.91, p = 2.3*10-11). This same variant also associates with lower levels of hepatic fat on computed tomographic imaging and lower odds of physician-diagnosed fatty liver as well as lower blood levels of alanine transaminase (-0.025 SD, 3.7*10-43), alkaline phosphatase (-0.025 SD, 1.2*10-37), total cholesterol (-0.030 SD, p = 1.9*10-36) and LDL cholesterol (-0.027 SD, p = 5.1*10-30) levels. We identified a series of additional MARC1 alleles (low-frequency missense p.M187K and rare protein-truncating p.R200Ter) that also associated with lower cholesterol levels, liver enzyme levels and reduced risk of cirrhosis (0 cirrhosis cases for 238 R200Ter carriers versus 17,046 cases of cirrhosis among 759,027 non-carriers, p = 0.04) suggesting that deficiency of the MARC1 enzyme may lower blood cholesterol levels and protect against cirrhosis.


Assuntos
Fígado Gorduroso/genética , Fígado Gorduroso/prevenção & controle , Predisposição Genética para Doença , Cirrose Hepática/genética , Cirrose Hepática/prevenção & controle , Proteínas Mitocondriais/genética , Mutação de Sentido Incorreto/genética , Oxirredutases/genética , Alelos , LDL-Colesterol/sangue , Doença da Artéria Coronariana/genética , Conjuntos de Dados como Assunto , Fígado Gorduroso/sangue , Fígado Gorduroso/enzimologia , Feminino , Homozigoto , Humanos , Fígado/enzimologia , Cirrose Hepática/sangue , Cirrose Hepática/enzimologia , Cirrose Hepática Alcoólica/sangue , Cirrose Hepática Alcoólica/enzimologia , Cirrose Hepática Alcoólica/genética , Cirrose Hepática Alcoólica/prevenção & controle , Mutação com Perda de Função/genética , Masculino , Pessoa de Meia-Idade
12.
Cell ; 177(3): 587-596.e9, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-31002795

RESUMO

Severe obesity is a rapidly growing global health threat. Although often attributed to unhealthy lifestyle choices or environmental factors, obesity is known to be heritable and highly polygenic; the majority of inherited susceptibility is related to the cumulative effect of many common DNA variants. Here we derive and validate a new polygenic predictor comprised of 2.1 million common variants to quantify this susceptibility and test this predictor in more than 300,000 individuals ranging from middle age to birth. Among middle-aged adults, we observe a 13-kg gradient in weight and a 25-fold gradient in risk of severe obesity across polygenic score deciles. In a longitudinal birth cohort, we note minimal differences in birthweight across score deciles, but a significant gradient emerged in early childhood and reached 12 kg by 18 years of age. This new approach to quantify inherited susceptibility to obesity affords new opportunities for clinical prevention and mechanistic assessment.


Assuntos
Peso Corporal , Herança Multifatorial/genética , Obesidade/patologia , Adolescente , Índice de Massa Corporal , Criança , Bases de Dados Factuais , Feminino , Estudo de Associação Genômica Ampla , Humanos , Recém-Nascido , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Obesidade/genética , Fatores de Risco , Índice de Gravidade de Doença
13.
Arthritis Rheumatol ; 71(6): 925-934, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30615301

RESUMO

OBJECTIVE: To investigate the causal role of cardiometabolic risk factors in osteoarthritis (OA) using associated genetic variants. METHODS: We studied 27,691 adults from the Malmö Diet and Cancer Study (MDCS) and replicated novel findings among 376,435 adults from the UK Biobank. Trait-specific polygenic risk scores for low-density lipoprotein (LDL) and high-density lipoprotein (HDL) cholesterol levels, triglyceride levels, body mass index (BMI), fasting plasma glucose (FPG) levels, and systolic blood pressure (BP) were used to test the associations of genetically predicted elevations in each trait with incident OA diagnosis (n = 3,559), OA joint replacement (n = 2,780), or both (total OA; n = 4,226) in Mendelian randomization (MR) analyses in the MDCS, and with self-reported and/or hospital-diagnosed OA (n = 65,213) in the UK Biobank. Multivariable MR, MR-Egger, and weighted median MR were used to adjust for potential pleiotropic biases. RESULTS: In the MDCS, genetically predicted elevation in LDL cholesterol level was associated with a lower risk of OA diagnosis (odds ratio [OR] 0.83 [95% confidence interval (95% CI) 0.73-0.95] per 1SD increase) and total OA (OR 0.87 [95% CI 0.78-0.98]), which was supported by multivariable MR for OA diagnosis (OR 0.84 [95% CI 0.75-0.95]) and total OA (0.87 [95% CI 0.78-0.97]), and by conventional 2-sample MR for OA diagnosis (OR 0.86 [95% CI 0.75-0.98]). MR-Egger indicated no pleiotropic bias. Genetically predicted elevation in BMI was associated with an increased risk of OA diagnosis (OR 1.65 [95% CI 1.14-2.41]), while MR-Egger indicated pleiotropic bias and a larger association with OA diagnosis (OR 3.25 [1.26-8.39]), OA joint replacement (OR 3.81 [95% CI 1.39-10.4]), and total OA (OR 3.41 [95% CI 1.43-8.15]). No associations were observed between genetically predicted HDL cholesterol level, triglyceride level, FPG level, or systolic BP and OA outcomes. The associations with LDL cholesterol levels were replicated in the UK Biobank (OR 0.95 [95% CI 0.93-0.98]). CONCLUSION: Our MR study provides evidence of a causal role of lower LDL cholesterol level and higher BMI in OA.


Assuntos
Dislipidemias/epidemiologia , Osteoartrite/epidemiologia , Sobrepeso/epidemiologia , Idoso , Artroplastia de Substituição/estatística & dados numéricos , Glicemia/metabolismo , Pressão Sanguínea/genética , Índice de Massa Corporal , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , HDL-Colesterol/metabolismo , LDL-Colesterol/metabolismo , Dislipidemias/genética , Dislipidemias/metabolismo , Jejum/metabolismo , Feminino , Humanos , Incidência , Masculino , Análise da Randomização Mendeliana , Síndrome Metabólica/epidemiologia , Síndrome Metabólica/genética , Síndrome Metabólica/metabolismo , Pessoa de Meia-Idade , Herança Multifatorial , Osteoartrite/genética , Osteoartrite/metabolismo , Osteoartrite/cirurgia , Sobrepeso/genética , Risco , Suécia/epidemiologia , Triglicerídeos/metabolismo , Reino Unido/epidemiologia
14.
Circulation ; 139(4): 489-501, 2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30586722

RESUMO

BACKGROUND: Heart failure (HF) is a morbid and heritable disorder for which the biological mechanisms are incompletely understood. We therefore examined genetic associations with HF in a large national biobank, and assessed whether refined phenotypic classification would facilitate genetic discovery. METHODS: We defined all-cause HF among 488 010 participants from the UK Biobank and performed a genome-wide association analysis. We refined the HF phenotype by classifying individuals with left ventricular dysfunction and without coronary artery disease as having nonischemic cardiomyopathy (NICM), and repeated a genetic association analysis. We then pursued replication of lead HF and NICM variants in independent cohorts, and performed adjusted association analyses to assess whether identified genetic associations were mediated through clinical HF risk factors. In addition, we tested rare, loss-of-function mutations in 24 known dilated cardiomyopathy genes for association with HF and NICM. Finally, we examined associations between lead variants and left ventricular structure and function among individuals without HF using cardiac magnetic resonance imaging (n=4158) and echocardiographic data (n=30 201). RESULTS: We identified 7382 participants with all-cause HF in the UK Biobank. Genome-wide association analysis of all-cause HF identified several suggestive loci (P<1×10-6), the majority linked to upstream HF risk factors, ie, coronary artery disease (CDKN2B-AS1 and MAP3K7CL) and atrial fibrillation (PITX2). Refining the HF phenotype yielded a subset of 2038 NICM cases. In contrast to all-cause HF, genetic analysis of NICM revealed suggestive loci that have been implicated in dilated cardiomyopathy (BAG3, CLCNKA-ZBTB17). Dilated cardiomyopathy signals arising from our NICM analysis replicated in independent cohorts, persisted after HF risk factor adjustment, and were associated with indices of left ventricular dysfunction in individuals without clinical HF. In addition, analyses of loss-of-function variants implicated BAG3 as a disease susceptibility gene for NICM (loss-of-function variant carrier frequency=0.01%; odds ratio,12.03; P=3.62×10-5). CONCLUSIONS: We found several distinct genetic mechanisms of all-cause HF in a national biobank that reflect well-known HF risk factors. Phenotypic refinement to a NICM subtype appeared to facilitate the discovery of genetic signals that act independently of clinical HF risk factors and that are associated with subclinical left ventricular dysfunction.

15.
Am J Hum Genet ; 103(4): 461-473, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30220432

RESUMO

Excretion of albumin in urine, or albuminuria, is associated with the development of multiple cardiovascular and metabolic diseases. However, whether pathways leading to albuminuria are causal for cardiometabolic diseases is unclear. We addressed this question using a Mendelian randomization framework in the UK Biobank, a large population-based cohort. We first performed a genome-wide association study for albuminuria in 382,500 individuals and identified 32 new albuminuria loci. We constructed albuminuria genetic risk scores and tested for association with cardiometabolic diseases. Genetically elevated albuminuria was strongly associated with increased risk of hypertension (1.38 OR; 95% CI, 1.27-1.50 per 1 SD predicted increase in albuminuria, p = 7.01 × 10-14). We then examined bidirectional associations of albuminuria with blood pressure which suggested that genetically elevated albuminuria led to higher blood pressure (2.16 mmHg systolic blood pressure; 95% CI, 1.51-2.82 per 1 SD predicted increase in albuminuria, p = 1.22 × 10-10) and that genetically elevated blood pressure led to more albuminuria (0.005 SD; 95% CI 0.004-0.006 per 1 mmHg predicted increase in systolic blood pressure, p = 2.45 × 10-13). These results support the existence of a feed-forward loop between albuminuria and blood pressure and imply that albuminuria could increase risk of cardiovascular disease through blood pressure. Moreover, they suggest therapies that target albuminuria-increasing processes could have antihypertensive effects that are amplified through inhibition of this feed-forward loop.


Assuntos
Albuminúria/genética , Pressão Sanguínea/genética , Doenças Cardiovasculares/genética , Doenças Metabólicas/genética , Feminino , Estudo de Associação Genômica Ampla/métodos , Humanos , Hipertensão/genética , Masculino , Pessoa de Meia-Idade , Fatores de Risco
16.
Nat Genet ; 50(9): 1219-1224, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30104762

RESUMO

A key public health need is to identify individuals at high risk for a given disease to enable enhanced screening or preventive therapies. Because most common diseases have a genetic component, one important approach is to stratify individuals based on inherited DNA variation1. Proposed clinical applications have largely focused on finding carriers of rare monogenic mutations at several-fold increased risk. Although most disease risk is polygenic in nature2-5, it has not yet been possible to use polygenic predictors to identify individuals at risk comparable to monogenic mutations. Here, we develop and validate genome-wide polygenic scores for five common diseases. The approach identifies 8.0, 6.1, 3.5, 3.2, and 1.5% of the population at greater than threefold increased risk for coronary artery disease, atrial fibrillation, type 2 diabetes, inflammatory bowel disease, and breast cancer, respectively. For coronary artery disease, this prevalence is 20-fold higher than the carrier frequency of rare monogenic mutations conferring comparable risk6. We propose that it is time to contemplate the inclusion of polygenic risk prediction in clinical care, and discuss relevant issues.


Assuntos
Doença/genética , Predisposição Genética para Doença , Herança Multifatorial , Mutação , Adulto , Idoso , Feminino , Estudo de Associação Genômica Ampla/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Fatores de Risco
17.
Nat Commun ; 9(1): 1306, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29610518

RESUMO

Insulin receptor (IR) plays a key role in the control of glucose homeostasis; however, the regulation of its cellular expression remains poorly understood. Here we show that the amount of biologically active IR is regulated by the cleavage of its ectodomain, by the ß-site amyloid precursor protein cleaving enzyme 1 (BACE1), in a glucose concentration-dependent manner. In vivo studies demonstrate that BACE1 regulates the amount of IR and insulin signaling in the liver. During diabetes, BACE1-dependent cleavage of IR is increased and the amount of IR in the liver is reduced, whereas infusion of a BACE1 inhibitor partially restores liver IR. We suggest the potential use of BACE1 inhibitors to enhance insulin signaling during diabetes. Additionally, we show that plasma levels of cleaved IR reflect IR isoform A expression levels in liver tumors, which prompts us to propose that the measurement of circulating cleaved IR may assist hepatic cancer detection and management.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Antígenos CD/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Fígado/metabolismo , Receptor de Insulina/metabolismo , Animais , Diabetes Mellitus/metabolismo , Feminino , Glucose/química , Glicosilação , Células HEK293 , Humanos , Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neoplasias/metabolismo , Domínios Proteicos , Transdução de Sinais
18.
Circulation ; 134(1): 61-72, 2016 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-27358438

RESUMO

BACKGROUND: In nephrotic syndrome, damage to the podocytes of the kidney produces severe hypercholesterolemia for which novel treatments are urgently needed. PCSK9 (proprotein convertase subtilisin/kexin type 9) has emerged as an important regulator of plasma cholesterol levels and therapeutic target. Here, we tested the role of PCSK9 in mediating the hypercholesterolemia of nephrotic syndrome. METHODS: PCSK9 and plasma lipids were studied in nephrotic syndrome patients before and after remission of disease, mice with genetic ablation of the podocyte (Podocyte Apoptosis Through Targeted Activation of Caspase-8, Pod-ATTAC mice) and mice treated with nephrotoxic serum (NTS), which triggers immune-mediated podocyte damage. In addition, mice with hepatic deletion of Pcsk9 were treated with NTS to determine the contribution of PCSK9 to the dyslipidemia of nephrotic syndrome. RESULTS: Patients with nephrotic syndrome showed a decrease in plasma cholesterol and plasma PCSK9 on remission of their disease (P<0.05, n=47-50). Conversely, Pod-ATTAC mice and NTS-treated mice showed hypercholesterolemia and a 7- to 24-fold induction in plasma PCSK9. The induction of plasma PCSK9 appeared to be attributable to increased secretion of PCSK9 from the hepatocyte coupled with decreased clearance. Interestingly, knockout of Pcsk9ameliorated the effects of NTS on plasma lipids. Thus, in the presence of NTS, mice lacking hepatic Pcsk9 showed a 40% to 50% decrease in plasma cholesterol and triglycerides. Moreover, the ability of NTS treatment to increase the percentage of low-density lipoprotein-associated cholesterol (from 9% in vehicle-treated Flox mice to 47% after NTS treatment), was lost in mice with hepatic deletion of Pcsk9 (5% in both the presence and absence of NTS). CONCLUSIONS: Podocyte damage triggers marked inductions in plasma PCSK9, and knockout of Pcsk9 ameliorates dyslipidemia in a mouse model of nephrotic syndrome. These data suggest that PCSK9 inhibitors may be beneficial in patients with nephrotic syndrome-associated hypercholesterolemia.


Assuntos
Hipercolesterolemia/etiologia , Síndrome Nefrótica/complicações , Pró-Proteína Convertase 9/fisiologia , Animais , Humanos , Hipercolesterolemia/enzimologia , Lipídeos/sangue , Fígado/enzimologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Síndrome Nefrótica/sangue , Síndrome Nefrótica/enzimologia , Podócitos/patologia , Pró-Proteína Convertase 9/deficiência , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/uso terapêutico , Proteínas Recombinantes/uso terapêutico
19.
Endocrinology ; 157(4): 1421-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26824363

RESUMO

Leptin treatment has beneficial effects on plasma lipids in patients with lipodystrophy, but the underlying mechanism is unknown. Proprotein convertase subtilisin/kexin type 9 (PCSK9) decreases low-density lipoprotein (LDL) clearance, promotes hypercholesterolemia, and has recently emerged as a novel therapeutic target. To determine the effect of leptin on PCSK9, we treated male and female ob/ob mice with leptin for 4 days via sc osmotic pumps (∼24 µg/d). Leptin reduced body weight and food intake in all mice, but the effects of leptin on plasma PCSK9 and lipids differed markedly between the sexes. In male mice, leptin suppressed PCSK9 but had no effect on plasma triglycerides or cholesterol. In female mice, leptin suppressed plasma triglycerides and cholesterol but had no effect on plasma PCSK9. In parallel, we treated female lipodystrophic patients (8 females, ages 5-23 y) with sc metreleptin injections (∼4.4 mg/d) for 4-6 months. In this case, leptin reduced plasma PCSK9 by 26% (298 ± 109 vs 221 ± 102 ng/mL; n = 8; P = .008), and the change in PCSK9 was correlated with a decrease in LDL cholesterol (r(2) = 0.564, P = .03). In summary, in leptin-deficient ob/ob mice, the effects of leptin on PCSK9 and plasma lipids appeared to be independent of one another and strongly modified by sex. On the other hand, in lipodystrophic females, leptin treatment reduced plasma PCSK9 in parallel with LDL cholesterol.


Assuntos
Leptina/farmacologia , Lipodistrofia/sangue , Obesidade/sangue , Pró-Proteína Convertases/sangue , Serina Endopeptidases/sangue , Adolescente , Animais , Western Blotting , Criança , Pré-Escolar , Colesterol/sangue , LDL-Colesterol/sangue , Ensaio de Imunoadsorção Enzimática , Feminino , Expressão Gênica/efeitos dos fármacos , Humanos , Lipodistrofia/fisiopatologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos Obesos , Obesidade/fisiopatologia , Pró-Proteína Convertase 9 , Pró-Proteína Convertases/genética , Pró-Proteína Convertases/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Fatores Sexuais , Triglicerídeos/sangue , Adulto Jovem
20.
J Biol Chem ; 291(3): 1115-22, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26511317

RESUMO

Diabetes is characterized by increased lipogenesis as well as increased endoplasmic reticulum (ER) stress and inflammation. The nuclear hormone receptor liver X receptor (LXR) is induced by insulin and is a key regulator of lipid metabolism. It promotes lipogenesis and cholesterol efflux, but suppresses endoplasmic reticulum stress and inflammation. The goal of these studies was to dissect the effects of insulin on LXR action. We used antisense oligonucleotides to knock down Lxrα in mice with hepatocyte-specific deletion of the insulin receptor and their controls. We found, surprisingly, that knock-out of the insulin receptor and knockdown of Lxrα produced equivalent, non-additive effects on the lipogenic genes. Thus, insulin was unable to induce the lipogenic genes in the absence of Lxrα, and LXRα was unable to induce the lipogenic genes in the absence of insulin. However, insulin was not required for LXRα to modulate the phospholipid profile, or to suppress genes in the ER stress or inflammation pathways. These data show that insulin is required specifically for the lipogenic effects of LXRα and that manipulation of the insulin signaling pathway could dissociate the beneficial effects of LXR on cholesterol efflux, inflammation, and ER stress from the negative effects on lipogenesis.


Assuntos
Estresse do Retículo Endoplasmático , Regulação da Expressão Gênica , Hepatite/metabolismo , Insulina/metabolismo , Lipogênese , Fígado/metabolismo , Receptores Nucleares Órfãos/agonistas , Animais , Cruzamentos Genéticos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/imunologia , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Regulação Enzimológica da Expressão Gênica , Técnicas de Silenciamento de Genes , Hepatite/complicações , Hepatite/enzimologia , Hepatite/imunologia , Resistência à Insulina , Fígado/enzimologia , Fígado/imunologia , Receptores X do Fígado , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Receptores Nucleares Órfãos/antagonistas & inibidores , Receptores Nucleares Órfãos/genética , Receptores Nucleares Órfãos/metabolismo , Fosfolipídeos/metabolismo , Receptor de Insulina/agonistas , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...