Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-31579351

RESUMO

Over the past three decades, the widespread utility and applicability of X-ray photoelectron spectroscopy (XPS) in research and applications has made it the most popular and widely used method of surface analysis. Associated with this increased use has been an increase in the number of new or inexperienced users which has led to erroneous uses and misapplications of the method. This article is the first in a series of guides assembled by a committee of experienced XPS practitioners that are intended to assist inexperienced users by providing information about good practices in the use of XPS. This first guide outlines steps appropriate for determining whether XPS is capable of obtaining the desired information, identifies issues relevant to planning, conducting and reporting an XPS measurement, and identifies sources of practical information for conducting XPS measurements. Many of the topics and questions addressed in this article also apply to other surface-analysis techniques.

2.
ACS Appl Mater Interfaces ; 11(43): 39890-39901, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31577115

RESUMO

High-voltage lithium-ion cathode materials exhibit exceptional energy densities; however, rapid capacity fade during cell cycling prohibits their widespread utilization. Surface modification of cathode-active materials by organic self-assembled monolayers (SAMs) has emerged as an approach to improve the longevity of high-voltage electrodes; however, the surface chemistry at the electrode/electrolyte interphase and its dependence on monolayer structure remains unclear. Herein, we investigate the interplay between monolayer structure, electrochemical performance, and surface chemistry of high-voltage LiMn1.5Ni0.5O4 (LMNO) electrodes by the application of silane-based SAMs of variable length and chemical composition. We demonstrate that the application of both hydrophobic and hydrophilic monolayers results in improved galvanostatic capacity retention relative to unmodified LMNO. The extent of this improvement is tied to the structure of the monolayer with fluorinated alkyl-silanes exhibiting the greatest overall capacity retention, above 96% after 100 charge/discharge cycles. Postmortem surface analysis reveals that the presence of the monolayer enhances the deposition of LiF at the electrode surface during cell cycling and that the total surface concentration correlates with the overall improvements in capacity retention. We propose that the enhanced deposition of highly insulating LiF increases the anodic stability of the interphase, contributing to the improved galvanostatic performance of modified electrodes. Moreover, this work demonstrates that the modification of the electrode surface by the selection of an appropriate monolayer is an effective approach to tune the properties and behavior of the electrode/electrolyte interphase formed during battery operation.

3.
J Phys Chem Lett ; 8(24): 6226-6230, 2017 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-29232136

RESUMO

Surface reactions occurring on LiMn2O4, LiCoO2, LiNiO2, Li[Ni1/3Mn1/3Co1/3]O2, and LiFePO4 during charging and overcharging are studied by in situ and ex situ Auger electron spectroscopy. Carbon surface stability at the cathode solid-electrolyte interphase (SEI), associated with carbonate formation, decomposition, and CO/CO2 evolution, on different electrodes during cycling correlates with their cycle life. To understand how associated CO and CO2 evolution affects cycle stability, LiMn2O4 is cycled in flowing gas. Flowing Ar enhances cycle life by a factor of 2, while flowing Ar with 1% CO2 reduces cycle life by a factor of 2. CO2 is proposed to degrade cycle life by trapping Li and metal ions as carbonate in the anode SEI.

4.
ACS Appl Mater Interfaces ; 9(45): 39357-39370, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29045124

RESUMO

We evaluate hydrofluoroether (HFE) cosolvents with varying degrees of fluorination in the acetonitrile-based solvate electrolyte to determine the effect of the HFE structure on the electrochemical performance of the Li-S battery. Solvates or sparingly solvating electrolytes are an interesting electrolyte choice for the Li-S battery due to their low polysulfide solubility. The solvate electrolyte with a stoichiometric ratio of LiTFSI salt in acetonitrile, (MeCN)2-LiTFSI, exhibits limited polysulfide solubility due to the high concentration of LiTFSI. We demonstrate that the addition of highly fluorinated HFEs to the solvate yields better capacity retention compared to that of less fluorinated HFE cosolvents. Raman and NMR spectroscopy coupled with ab initio molecular dynamics simulations show that HFEs exhibiting a higher degree of fluorination coordinate to Li+ at the expense of MeCN coordination, resulting in higher free MeCN content in solution. However, the polysulfide solubility remains low, and no crossover of polysulfides from the S cathode to the Li anode is observed.

5.
ACS Appl Mater Interfaces ; 9(39): 33968-33978, 2017 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-28901735

RESUMO

This work utilizes in situ electrochemical and analytical characterization during cycling of LiMn2O4 (LMO) equilibrated at different potentials in an ultrahigh vacuum (UHV) environment. The LMO reacts with organic molecules in the vacuum to form a high surface concentration of Li2CO3 (≈50% C) during initial charging to 4.05 V. Charging to higher potentials reduces the overall Li2CO3 concentration (≈15% C). Discharging to 3.0 V increases the Li2CO3 concentration (≈30% C) and over discharging to 0.1 V again reduces its concentration (≈15% C). This behavior is reproducible over 5 cycles. The model geometry utilized suggests that oxygen from LMO can participate in redox of carbon, where LMO contributes oxygen to form the carbonate in the solid electrolyte interphase (SEI). Similar results were obtained from samples cycled ex situ, suggesting that the model in situ geometry provides reasonably representative information about surface chemistry evolution. Carbon redox at LMO and the inherent voltage instability of the Li2CO3 likely contributes significantly to its capacity fade.

6.
J Am Chem Soc ; 139(1): 47-50, 2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-27958727

RESUMO

Electrochemical conversion of CO2 holds promise for utilization of CO2 as a carbon feedstock and for storage of intermittent renewable energy. Presently Cu is the only metallic electrocatalyst known to reduce CO2 to appreciable amounts of hydrocarbons, but often a wide range of products such as CO, HCOO-, and H2 are formed as well. Better catalysts that exhibit high activity and especially high selectivity for specific products are needed. Here a range of bimetallic Cu-Pd catalysts with ordered, disordered, and phase-separated atomic arrangements (Cuat:Pdat = 1:1), as well as two additional disordered arrangements (Cu3Pd and CuPd3 with Cuat:Pdat = 3:1 and 1:3), are studied to determine key factors needed to achieve high selectivity for C1 or C2 chemicals in CO2 reduction. When compared with the disordered and phase-separated CuPd catalysts, the ordered CuPd catalyst exhibits the highest selectivity for C1 products (>80%). The phase-separated CuPd and Cu3Pd achieve higher selectivity (>60%) for C2 chemicals than CuPd3 and ordered CuPd, which suggests that the probability of dimerization of C1 intermediates is higher on surfaces with neighboring Cu atoms. Based on surface valence band spectra, geometric effects rather than electronic effects seem to be key in determining the selectivity of bimetallic Cu-Pd catalysts. These results imply that selectivities to different products can be tuned by geometric arrangements. This insight may benefit the design of catalytic surfaces that further improve activity and selectivity for CO2 reduction.

7.
Chem Commun (Camb) ; 52(90): 13257-13260, 2016 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-27775104

RESUMO

The complex nature of Li-ion battery reactions along with their sensitivity to environmental exposure necessitates in situ characterization, particularly for surface sensitive methods. In this work, we demonstrate in situ X-ray photoelectron spectroscopy and in situ Auger electron spectroscopy applied to characterize the evolution of bonding and chemistry during cycling of nanoparticle electrodes. We apply the method to study the conversion reaction associated with Li insertion and extraction from CuO nanoparticle electrodes. This approach circumvents the need for ion sputtering and mechanical erosion, previously required to remove solid electrolyte interphase during ex situ measurements. This allows the elucidation of the changes in Cu oxidation state, during initial Li insertion, without the introduction of artifacts that have caused prior disagreement in the published literature.

8.
ACS Appl Mater Interfaces ; 8(37): 24310-4, 2016 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-27598453

RESUMO

A low-temperature (<120 °C) route to pinhole-free amorphous TiO2 compact layers may pave the way to more efficient, flexible, and stable inverted perovskite halide device designs. Toward this end, we utilize low-temperature thermal atomic layer deposition (ALD) to synthesize ultrathin (12 nm) compact TiO2 underlayers for planar halide perovskite PV. Although device performance with as-deposited TiO2 films is poor, we identify room-temperature UV-O3 treatment as a route to device efficiency comparable to crystalline TiO2 thin films synthesized by higher temperature methods. We further explore the chemical, physical, and interfacial properties that might explain the improved performance through X-ray diffraction, spectroscopic ellipsometry, Raman spectroscopy, and X-ray photoelectron spectroscopy. These findings challenge our intuition about effective electron selective layers as well as point the way to a greater selection of flexible substrates and more stable inverted device designs.

9.
Nat Commun ; 7: 12582, 2016 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-27538720

RESUMO

The widespread use of fuel cells is currently limited by the lack of efficient and cost-effective catalysts for the oxygen reduction reaction. Iron-based non-precious metal catalysts exhibit promising activity and stability, as an alternative to state-of-the-art platinum catalysts. However, the identity of the active species in non-precious metal catalysts remains elusive, impeding the development of new catalysts. Here we demonstrate the reversible deactivation and reactivation of an iron-based non-precious metal oxygen reduction catalyst achieved using high-temperature gas-phase chlorine and hydrogen treatments. In addition, we observe a decrease in catalyst heterogeneity following treatment with chlorine and hydrogen, using Mössbauer and X-ray absorption spectroscopy. Our study reveals that protected sites adjacent to iron nanoparticles are responsible for the observed activity and stability of the catalyst. These findings may allow for the design and synthesis of enhanced non-precious metal oxygen reduction catalysts with a higher density of active sites.

11.
Nano Lett ; 16(7): 4708-12, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27351580

RESUMO

We report that substrate doping-induced charge carrier density modulation leads to the tunable wettability and adhesion of graphene. Graphene's water contact angle changes by as much as 13° as a result of a 300 meV change in doping level. Upon either n- or p-type doping with subsurface polyelectrolytes, graphene exhibits increased hydrophilicity. Adhesion force measurements using a hydrophobic self-assembled monolayer-coated atomic force microscopy probe reveal enhanced attraction toward undoped graphene, consistent with wettability modulation. This doping-induced wettability modulation is also achieved via a lateral metal-graphene heterojunction or subsurface metal doping. Combined first-principles and atomistic calculations show that doping modulates the binding energy between water and graphene and thus increases its hydrophilicity. Our study suggests that the doping-induced modulation of the charge carrier density in graphene influences its wettability and adhesion [corrected]. This opens up unique and new opportunities for the tunable wettability and adhesion of graphene for advanced coating materials and transducers.

12.
ACS Appl Mater Interfaces ; 7(33): 18406-14, 2015 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-26258957

RESUMO

Although rechargeable magnesium (Mg) batteries show promise for use as a next generation technology for high-density energy storage, little is known about the Mg anode solid electrolyte interphase and its implications for the performance and durability of a Mg-based battery. We explore in this report passivation effects engendered during the electrochemical cycling of a bulk Mg anode, characterizing their influences during metal deposition and dissolution in a simple, nonaqueous, Grignard electrolyte solution (ethylmagnesium bromide, EtMgBr, in tetrahydrofuran). Scanning electron microscopy images of Mg foil working electrodes after electrochemical polarization to dissolution potentials show the formation of corrosion pits. The pit densities so evidenced are markedly potential-dependent. When the Mg working electrode is cycled both potentiostatically and galvanostatically in EtMgBr these pits, formed due to passive layer breakdown, act as the foci for subsequent electrochemical activity. Detailed microscopy, diffraction, and spectroscopic data show that further passivation and corrosion results in the anisotropic stripping of the Mg {0001} plane, leaving thin oxide-comprising passivated side wall structures that demark the {0001} fiber texture of the etched Mg grains. Upon long-term cycling, oxide side walls formed due to the pronounced crystallographic anisotropy of the anodic stripping processes, leading to complex overlay anisotropic, columnar structures, exceeding 50 µm in height. The passive responses mediating the growth of these structures appear to be an intrinsic feature of the electrochemical growth and dissolution of Mg using this electrolyte.

13.
J Chem Phys ; 142(23): 234505, 2015 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-26093566

RESUMO

Illumination is known to induce stress and morphology changes in opaque glasses. Amorphous silicon carbide (a-SiC) has a smaller bandgap than the crystal. Thus, we were able to excite with 532 nm light a 1 µm amorphous surface layer on a SiC crystal while recording time-lapse movies of glass surface dynamics by scanning tunneling microscopy (STM). Photoexcitation of the a-SiC surface layer through the transparent crystal avoids heating the STM tip. Up to 6 × 10(4) s, long movies of surface dynamics with 40 s time resolution and sub-nanometer spatial resolution were obtained. Clusters of ca. 3-5 glass forming units diameter are seen to cooperatively hop between two states at the surface. Photoexcitation with green laser light recruits immobile clusters to hop, rather than increasing the rate at which already mobile clusters hop. No significant laser heating was observed. Thus, we favor an athermal mechanism whereby electronic excitation of a-SiC directly controls glassy surface dynamics. This mechanism is supported by an exciton migration-relaxation-thermal diffusion model. Individual clusters take ∼1 h to populate states differently after the light intensity has changed. We believe the surrounding matrix rearranges slowly when it is stressed by a change in laser intensity, and clusters serve as a diagnostic. Such cluster hopping and matrix rearrangement could underlie the microscopic mechanism of photoinduced aging of opaque glasses.

14.
ACS Nano ; 9(5): 4806-13, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25844819

RESUMO

As-grown randomly aligned networks of carbon nanotubes (CNTs) invariably suffer from limited transport properties due to high resistance at the crossed junctions between CNTs. In this work, Joule heating of the highly resistive CNT junctions is carried out in the presence of a spin-coated layer of a suitable chemical precursor. The heating triggers thermal decomposition of the chemical precursor, tris(dibenzylideneacetone)dipalladium (Pd2(dba)3), and causes local deposition of Pd nanoparticles at the CNT junctions, thereby improving the on/off current ratio and mobility of CNT network devices by an average factor of ∼6. This process can be conducted either in air or under vacuum depending on the characteristics of the precursor species. The solution-mediated nanosoldering process is simple, fast, scalable with manufacturing techniques, and extendable to the nanodeposition of a wide variety of materials.

15.
ACS Appl Mater Interfaces ; 7(4): 2494-502, 2015 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-25562374

RESUMO

We describe a voltammetric and spectroscopic study of Mg electrodeposition/dissolution (MgDep/Dis) in borohydride diglyme electrolyte solution containing Li(+) carried out on a Pt ultramicroelectrode (UME, r = 5 µm). The data reveal Li(+) cation facilitation that has not been previously recognized in studies made using macroelectrodes. While a single broad, asymmetric stripping peak is expected following MgDep on a Pt macroelectrode in 0.1 M Mg(BH4)2 + 1.5 M LiBH4 diglyme solution on a Pt UME, the stripping reveals three resolved oxidation peaks, suggesting that MgDep/Dis consists of not only a Mg/Mg(2+) redox reaction but also contributions from Mg-Li alloying/dissolution reaction processes. Detailed XPS, SIMS, ICP, and XRD studies were performed that confirm the importance of Mg-Li alloy formation processes, the nature of which is dependent on the reduction potential used during the MgDep step. Based on the electrochemical and surface analysis data, we propose an electrochemical mechanism for MgDep/Dis in a borohydride diglyme electrolyte solution that, in the presence of 1.5 M Li(+) ions, proceeds as follows: (1) Mg(2+) + 2e(-) ⇌ Mg; (2) (1 - x)Mg(2+) + xLi(+) + (2 - x)e(-) ⇌ Mg(1-x)Lix, 0 < x ≤ 0.02; and (3) (1 - y)Mg(2+) + yLi(+) + (2 - y)e(-) ⇌ Mg(1-y)Liy, 0.02 < y ≤ 0.09. Most significantly, we find that the potential-dependent MgDep/Dis kinetics are enhanced as the concentration of the LiBH4 in the diglyme electrolyte is increased, a result reflecting the facilitating influences of reduced uncompensated resistance and the enhanced electro-reduction kinetics of Mg(2+) due to Mg-Li alloy formation.

16.
Nanotechnology ; 26(5): 055302, 2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-25580991

RESUMO

We examine the transfer of graphene grown by chemical vapor deposition (CVD) with polymer scaffolds of poly(methyl methacrylate) (PMMA), poly(lactic acid) (PLA), poly(phthalaldehyde) (PPA), and poly(bisphenol A carbonate) (PC). We find that optimally reactive PC scaffolds provide the cleanest graphene transfers without any annealing, after extensive comparison with optical microscopy, x-ray photoelectron spectroscopy, atomic force microscopy, and scanning tunneling microscopy. Comparatively, films transferred with PLA, PPA, PMMA/PC, and PMMA have a two-fold higher roughness and a five-fold higher chemical doping. Using PC scaffolds, we demonstrate the clean transfer of CVD multilayer graphene, fluorinated graphene, and hexagonal boron nitride. Our annealing free, PC transfers enable the use of atomically-clean nanomaterials in biomolecule encapsulation and flexible electronic applications.


Assuntos
Compostos Benzidrílicos/química , Grafite/química , Nanoestruturas/química , Polímeros/química , Compostos de Boro/química , Ácido Láctico/química , Microscopia de Força Atômica , Microscopia de Tunelamento , Espectroscopia Fotoeletrônica , Poliésteres , Polimetil Metacrilato/química
17.
PLoS One ; 8(11): e80283, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24324555

RESUMO

Aerosolized or aspirated manufactured carbon nanotubes have been shown to be cytotoxic, cause pulmonary lesions, and demonstrate immunomodulatory properties. CD-1 mice were used to assess pulmonary toxicity of helical carbon nanotubes (HCNTs) and alterations of the immune response to subsequent infection by Pseudomonas aeruginosa in mice. HCNTs provoked a mild inflammatory response following either a single exposure or 2X/week for three weeks (multiple exposures) but were not significantly toxic. Administering HCNTs 2X/week for three weeks resulted in pulmonary lesions including granulomas and goblet cell hyperplasia. Mice exposed to HCNTs and subsequently infected by P. aeruginosa demonstrated an enhanced inflammatory response to P. aeruginosa and phagocytosis by alveolar macrophages was inhibited. However, clearance of P. aeruginosa was not affected. HCNT exposed mice depleted of neutrophils were more effective in clearing P. aeruginosa compared to neutrophil-depleted control mice, accompanied by an influx of macrophages. Depletion of systemic macrophages resulted in slightly inhibited bacterial clearance by HCNT treated mice. Our data indicate that pulmonary exposure to HCNTs results in lesions similar to those caused by other nanotubes and pre-exposure to HCNTs inhibit alveolar macrophage phagocytosis of P. aeruginosa. However, clearance was not affected as exposure to HCNTs primed the immune system for an enhanced inflammatory response to pulmonary infection consisting of an influx of neutrophils and macrophages.


Assuntos
Macrófagos Alveolares/microbiologia , Nanotubos de Carbono , Fagocitose/efeitos dos fármacos , Pseudomonas aeruginosa/imunologia , Animais , Pulmão/imunologia , Pulmão/microbiologia , Camundongos , Neutrófilos/imunologia
18.
Nanotechnology ; 23(17): 175302, 2012 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-22481483

RESUMO

It is a well-known fact that a sphere offers less surface area, and thus less surface energy, than any other arrangement of the same volume. From this perspective, all other shapes are metastable objects. In this paper, we present and discuss a manifestation of this metastability: the spontaneous alignment of free-standing amorphous nanowires towards, and ultimately parallel to, a flux of directional ion irradiation. The behavior expected from surface energy reduction is the opposite of that predicted by both theory and experiment regarding defect generation in crystalline nanowires, but is consistent with other observations on non-crystalline materials. We verify our expectations by bending and aligning finely stranded amorphous silica nanowires, noting that such nanostructures are particularly susceptible to bending through ion-induced surface energy reduction. We offer support for this mechanism through bending rate studies, thermal annealing experiments and mathematical modeling. Experimentally, we also demonstrate selective reorientation of nanowires in patterned areas, as well as conformal coating of reoriented arrays with functional materials. These capabilities offer the prospect of exploiting engineered surface anisotropies in optical, fluidic and micromechanical applications.

19.
J Biomed Mater Res A ; 78(3): 433-40, 2006 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16955553

RESUMO

In an attempt to interact natural bone and bone cells with biomaterials and to begin to develop modular tissue engineering scaffolds, substrates containing phosphonate groups were identified to mimic mineral-protein and natural polymer-protein interactions. In this study, we investigated poly(vinyl phosphonic acid) copolymer integration with existing materials as a graft-copolymer surface modification. Phosphonate-containing copolymer-modified surfaces were created and shown to have varying phosphate content within different polymeric surfaces. As the phosphonate content in the monomer feed approached 30% vinyl phosphonic acid, increased osteoblast-like cell adhesion (3- to 8-fold increase in adhesion) and proliferation (2- to 10-fold increase in proliferation rate) was observed. Since surfaces modified with 30% vinyl phosphonic acid in the feed exhibited a maximal cell adhesion and proliferation (9.4 x 10(4) cells/cm(2)/day), it was hypothesized that this copolymer composition was optimal for protein-polymer interactions. Osteoblast-like cells formed confluent layers and were able to differentiate on all surfaces that contained vinyl phosphonic acid. Most importantly, cells interacting with these surfaces were able to significantly mineralize the surface. These results suggest that phosphonate-containing polymers can be used to integrate biomaterials with natural bone and could be used for tissue engineering applications.


Assuntos
Materiais Biocompatíveis , Calcificação Fisiológica , Organofosfonatos , Osteoblastos/fisiologia , Polímeros , Células 3T3 , Animais , Adesão Celular/fisiologia , Camundongos , Osteoblastos/química , Osteoblastos/metabolismo
20.
J Am Chem Soc ; 127(42): 14574-5, 2005 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-16231901

RESUMO

The net charge of a colloidal particle was controlled using light and a new photocleavable self-assembled monolayer (SAM). The SAM contained a terminal ammonium group and a centrally located carboxylic acid group that was masked with an ortho-nitrobenzyl functionality. Once exposed to UV light, the 2-nitrobenzyl group was cleaved, therefore transforming the colloidal particle from a net positive (silica-SAM-NH3+) to a net negative (silica-SAM-COO-) charge. By varying the UV exposure time, their zeta potential could be tailored between +26 and -60 mV at neutral pH. To demonstrate a photoinduced gel-to-fluid phase transition, a binary colloidal suspension composed of silica-SAM-NH3+ and negatively charged, rhodamine-labeled silica particles was mixed to form a gel. Exposure to UV light rendered all of the particles negative and therefore converted the system into a colloidal fluid that settles to form a dense sediment.


Assuntos
Coloides/síntese química , Coloides/efeitos da radiação , Compostos Organometálicos/síntese química , Compostos Organometálicos/efeitos da radiação , Dióxido de Silício/química , Raios Ultravioleta , Coloides/química , Estrutura Molecular , Compostos Organometálicos/química , Tamanho da Partícula , Dióxido de Silício/efeitos da radiação , Eletricidade Estática , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...