Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 112022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35293859

RESUMO

Condensins compact chromosomes to promote their equal segregation during mitosis, but the mechanism of condensin engagement with and action on chromatin is incompletely understood. Here, we show that the general transcription factor TFIIH complex is continuously required to establish and maintain a compacted chromosome structure in transcriptionally silent Xenopus egg extracts. Inhibiting the DNA-dependent ATPase activity of the TFIIH complex subunit XPB rapidly and reversibly induces a complete loss of chromosome structure and prevents the enrichment of condensins I and II, but not topoisomerase II, on chromatin. In addition, inhibiting TFIIH prevents condensation of both mouse and Xenopus nuclei in Xenopus egg extracts, which suggests an evolutionarily conserved mechanism of TFIIH action. Reducing nucleosome density through partial histone depletion restores chromosome structure and condensin enrichment in the absence of TFIIH activity. We propose that the TFIIH complex promotes mitotic chromosome condensation by dynamically altering the chromatin environment to facilitate condensin loading and condensin-dependent loop extrusion.


Assuntos
Cromossomos , DNA Topoisomerases Tipo II , Animais , Cromatina , Cromossomos/metabolismo , DNA Topoisomerases Tipo II/metabolismo , Histonas , Camundongos , Mitose , Nucleossomos , Xenopus laevis/metabolismo
2.
Mol Biol Cell ; 31(20): 2207-2218, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32697622

RESUMO

The chromosomal passenger complex (CPC), which includes the kinase Aurora B, is a master regulator of meiotic and mitotic processes that ensure the equal segregation of chromosomes. Sgo1 is thought to play a major role in the recruitment of the CPC to chromosomes, but the molecular mechanism and contribution of Sgo1-dependent CPC recruitment is currently unclear. Using Xenopus egg extracts and biochemical reconstitution, we found that Sgo1 interacts directly with the dimerization domain of the CPC subunit Borealin. Borealin and the PP2A phosphatase complex can bind simultaneously to the coiled-coil domain of Sgo1, suggesting that Sgo1 can integrate Aurora B and PP2A activities to modulate Aurora B substrate phosphorylation. A Borealin mutant that specifically disrupts the Sgo1-Borealin interaction results in defects in CPC chromosomal recruitment and Aurora B-dependent spindle assembly, but not in spindle assembly checkpoint signaling at unattached kinetochores. These findings establish a direct molecular connection between Sgo1 and the CPC and have major implications for the different functions of Aurora B, which promote the proper interaction between spindle microtubules and chromosomes.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular/fisiologia , Animais , Aurora Quinase B/metabolismo , Proteínas de Ciclo Celular/fisiologia , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos , Dimerização , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Mitose , Fosforilação , Transdução de Sinais , Fuso Acromático/metabolismo , Proteínas de Xenopus , Xenopus laevis
3.
J Cell Biol ; 218(10): 3237-3257, 2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31527147

RESUMO

Outer kinetochore assembly enables chromosome attachment to microtubules and spindle assembly checkpoint (SAC) signaling in mitosis. Aurora B kinase controls kinetochore assembly by phosphorylating the Mis12 complex (Mis12C) subunit Dsn1. Current models propose Dsn1 phosphorylation relieves autoinhibition, allowing Mis12C binding to inner kinetochore component CENP-C. Using Xenopus laevis egg extracts and biochemical reconstitution, we found that autoinhibition of the Mis12C by Dsn1 impedes its phosphorylation by Aurora B. Our data indicate that the INCENP central region increases Dsn1 phosphorylation by enriching Aurora B at inner kinetochores, close to CENP-C. Furthermore, centromere-bound CENP-C does not exchange in mitosis, and CENP-C binding to the Mis12C dramatically increases Dsn1 phosphorylation by Aurora B. We propose that the coincidence of Aurora B and CENP-C at inner kinetochores ensures the fidelity of kinetochore assembly. We also found that the central region is required for the SAC beyond its role in kinetochore assembly, suggesting that kinetochore enrichment of Aurora B promotes the phosphorylation of other kinetochore substrates.


Assuntos
Aurora Quinase B/metabolismo , Cinetocoros/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Xenopus
4.
Mol Biol Cell ; 29(3): 285-294, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29187574

RESUMO

XMAP215/Dis1 family proteins are potent microtubule polymerases, critical for mitotic spindle structure and dynamics. While microtubule polymerase activity is driven by an N-terminal tumor overexpressed gene (TOG) domain array, proper cellular localization is a requisite for full activity and is mediated by a C-terminal domain. Structural insight into the C-terminal domain's architecture and localization mechanism remain outstanding. We present the crystal structure of the Saccharomyces cerevisiae Stu2 C-terminal domain, revealing a 15-nm parallel homodimeric coiled coil. The parallel architecture of the coiled coil has mechanistic implications for the arrangement of the homodimer's N-terminal TOG domains during microtubule polymerization. The coiled coil has two spatially distinct conserved regions: CRI and CRII. Mutations in CRI and CRII perturb the distribution and localization of Stu2 along the mitotic spindle and yield defects in spindle morphology including increased frequencies of mispositioned and fragmented spindles. Collectively, these data highlight roles for the Stu2 dimerization domain as a scaffold for factor binding that optimally positions Stu2 on the mitotic spindle to promote proper spindle structure and dynamics.


Assuntos
Cinetocoros/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Ligação Proteica , Domínios Proteicos/fisiologia , Elementos Estruturais de Proteínas/fisiologia , Saccharomyces cerevisiae/metabolismo , Fuso Acromático/metabolismo , Fuso Acromático/fisiologia , Tubulina (Proteína)/metabolismo
5.
Dev Cell ; 42(6): 640-654.e5, 2017 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-28950102

RESUMO

The chromosomal passenger complex (CPC) localizes to centromeres in early mitosis to activate its subunit Aurora B kinase. However, it is unclear whether centromeric CPC localization contributes to CPC functions beyond Aurora B activation. Here, we show that an activated CPC that cannot localize to centromeres supports functional assembly of the outer kinetochore but is unable to correct errors in kinetochore-microtubule attachment in Xenopus egg extracts. We find that CPC has two distinct roles at centromeres: one to selectively phosphorylate Ndc80 to regulate attachment and a second, conserved kinase-independent role in the proper composition of inner kinetochore proteins. Although a fully assembled inner kinetochore is not required for outer kinetochore assembly, we find it is essential to recruit tension indicators, such as BubR1 and 3F3/2, to erroneous attachments. We conclude centromeric CPC is necessary for tension-dependent removal of erroneous attachments and for the kinetochore composition required to detect tension loss.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Animais , Aurora Quinase B/metabolismo , Centrômero/metabolismo , Proteínas do Citoesqueleto , Células HeLa , Humanos , Proteínas Nucleares/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Xenopus
6.
PLoS Genet ; 12(4): e1006021, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27128635

RESUMO

Transcriptional inactivation of the budding yeast centromere has been a widely used tool in studies of chromosome segregation and aneuploidy. In haploid cells when an essential chromosome contains a single conditionally inactivated centromere (GAL-CEN), cell growth rate is slowed and segregation fidelity is reduced; but colony formation is nearly 100%. Pedigree analysis revealed that only 30% of the time both mother and daughter cell inherit the GAL-CEN chromosome. The reduced segregation capacity of the GAL-CEN chromosome is further compromised upon reduction of pericentric cohesin (mcm21∆), as reflected in a further diminishment of the Mif2 kinetochore protein at GAL-CEN. By redistributing cohesin from the nucleolus to the pericentromere (by deleting SIR2), there is increased presence of the kinetochore protein Mif2 at GAL-CEN and restoration of cell viability. These studies identify the ability of cohesin to promote chromosome segregation via kinetochore assembly, in a situation where the centromere has been severely compromised.


Assuntos
Proteínas de Ciclo Celular/genética , Centrômero/genética , Proteínas Cromossômicas não Histona/genética , Segregação de Cromossomos/genética , Saccharomyces cerevisiae/genética , Ativação Transcricional/genética , Anáfase/genética , Anáfase/fisiologia , Sobrevivência Celular/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Haploidia , Cinetocoros/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fuso Acromático/metabolismo , Coesinas
7.
Nat Cell Biol ; 18(4): 382-92, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26974660

RESUMO

The Ndc80 complex (Ndc80, Nuf2, Spc24 and Spc25) is a highly conserved kinetochore protein essential for end-on anchorage to spindle microtubule plus ends and for force generation coupled to plus-end polymerization and depolymerization. Spc24/Spc25 at one end of the Ndc80 complex binds the kinetochore. The N-terminal tail and CH domains of Ndc80 bind microtubules, and an internal domain binds microtubule-associated proteins (MAPs) such as the Dam1 complex. To determine how the microtubule- and MAP-binding domains of Ndc80 contribute to force production at the kinetochore in budding yeast, we have inserted a FRET tension sensor into the Ndc80 protein about halfway between its microtubule-binding and internal loop domains. The data support a mechanical model of force generation at metaphase where the position of the kinetochore relative to the microtubule plus end reflects the relative strengths of microtubule depolymerization, centromere stretch and microtubule-binding interactions with the Ndc80 and Dam1 complexes.


Assuntos
Centrômero/metabolismo , Cromossomos Fúngicos/metabolismo , Cinetocoros/metabolismo , Proteínas Luminescentes , Microtúbulos/metabolismo , Sítios de Ligação/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Transferência Ressonante de Energia de Fluorescência , Cinética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Biológicos , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligação Proteica , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Imagem com Lapso de Tempo
8.
Mol Biol Cell ; 26(11): 2067-79, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25833709

RESUMO

Evolutionarily conserved histone H3 variant Cse4 and its homologues are essential components of specialized centromere (CEN)-specific nucleosomes and serve as an epigenetic mark for CEN identity and propagation. Cse4 is a critical determinant for the structure and function of the kinetochore and is required to ensure faithful chromosome segregation. The kinetochore protein Pat1 regulates the levels and spatial distribution of Cse4 at centromeres. Deletion of PAT1 results in altered structure of CEN chromatin and chromosome segregation errors. In this study, we show that Pat1 protects CEN-associated Cse4 from ubiquitination in order to maintain proper structure and function of the kinetochore in budding yeast. PAT1-deletion strains exhibit increased ubiquitination of Cse4 and faster turnover of Cse4 at kinetochores. Psh1, a Cse4-specific E3-ubiquitin ligase, interacts with Pat1 in vivo and contributes to the increased ubiquitination of Cse4 in pat1∆ strains. Consistent with a role of Psh1 in ubiquitination of Cse4, transient induction of PSH1 in a wild-type strain resulted in phenotypes similar to a pat1∆ strain, including a reduction in CEN-associated Cse4, increased Cse4 ubiquitination, defects in spatial distribution of Cse4 at kinetochores, and altered structure of CEN chromatin. Pat1 interacts with Scm3 and is required for its maintenance at kinetochores. In conclusion, our studies provide novel insights into mechanisms by which Pat1 affects the structure of CEN chromatin and protects Cse4 from Psh1-mediated ubiquitination for faithful chromosome segregation.


Assuntos
Centrômero/metabolismo , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Histonas/metabolismo , Fatores de Alongamento de Peptídeos/metabolismo , Proteínas de Ligação a RNA/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
9.
J Cell Physiol ; 229(2): 132-8, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23893718

RESUMO

One of the most fundamental concepts of microscopy is that of resolution-the ability to clearly distinguish two objects as separate. Recent advances such as structured illumination microscopy (SIM) and point localization techniques including photoactivated localization microscopy (PALM), and stochastic optical reconstruction microscopy (STORM) strive to overcome the inherent limits of resolution of the modern light microscope. These techniques, however, are not always feasible or optimal for live cell imaging. Thus, in this review, we explore three techniques for extracting high resolution data from images acquired on a widefield microscope-deconvolution, model convolution, and Gaussian fitting. Deconvolution is a powerful tool for restoring a blurred image using knowledge of the point spread function (PSF) describing the blurring of light by the microscope, although care must be taken to ensure accuracy of subsequent quantitative analysis. The process of model convolution also requires knowledge of the PSF to blur a simulated image which can then be compared to the experimentally acquired data to reach conclusions regarding its geometry and fluorophore distribution. Gaussian fitting is the basis for point localization microscopy, and can also be applied to tracking spot motion over time or measuring spot shape and size. All together, these three methods serve as powerful tools for high-resolution imaging using widefield microscopy.


Assuntos
Microscopia/métodos , Fenômenos Ópticos , Espalhamento de Radiação
10.
J Cell Biol ; 203(3): 407-16, 2013 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-24189271

RESUMO

The mitotic segregation apparatus composed of microtubules and chromatin functions to faithfully partition a duplicated genome into two daughter cells. Microtubules exert extensional pulling force on sister chromatids toward opposite poles, whereas pericentric chromatin resists with contractile springlike properties. Tension generated from these opposing forces silences the spindle checkpoint to ensure accurate chromosome segregation. It is unknown how the cell senses tension across multiple microtubule attachment sites, considering the stochastic dynamics of microtubule growth and shortening. In budding yeast, there is one microtubule attachment site per chromosome. By labeling several chromosomes, we find that pericentromeres display coordinated motion and stretching in metaphase. The pericentromeres of different chromosomes exhibit physical linkage dependent on centromere function and structural maintenance of chromosomes complexes. Coordinated motion is dependent on condensin and the kinesin motor Cin8, whereas coordinated stretching is dependent on pericentric cohesin and Cin8. Linking of pericentric chromatin through cohesin, condensin, and kinetochore microtubules functions to coordinate dynamics across multiple attachment sites.


Assuntos
Centrômero/metabolismo , Segregação de Cromossomos/genética , Microtúbulos/metabolismo , Saccharomyces cerevisiae/genética , Fuso Acromático/metabolismo , Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromátides , Cromatina , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Cinesinas/metabolismo , Cinetocoros , Mitose/genética , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Estresse Fisiológico , Coesinas
11.
Curr Biol ; 23(19): 1939-44, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-24076245

RESUMO

The budding yeast kinetochore is ~68 nm in length with a diameter slightly larger than a 25 nm microtubule. The kinetochores from the 16 chromosomes are organized in a stereotypic cluster encircling central spindle microtubules. Quantitative analysis of the inner kinetochore cluster (Cse4, COMA) reveals structural features not apparent in singly attached kinetochores. The cluster of Cse4-containing kinetochores is physically larger perpendicular to the spindle axis relative to the cluster of Ndc80 molecules. If there was a single Cse4 (molecule or nucleosome) at the kinetochore attached to each microtubule plus end, the cluster of Cse4 would appear geometrically identical to Ndc80. Thus, the structure of the inner kinetochore at the surface of the chromosomes remains unsolved. We have used point fluorescence microscopy and statistical probability maps to deduce the two-dimensional mean position of representative components of the yeast kinetochore relative to the mitotic spindle in metaphase. Comparison of the experimental images to three-dimensional architectures from convolution of mathematical models reveals a pool of Cse4 radially displaced from Cse4 at the kinetochore and kinetochore microtubule plus ends. The pool of displaced Cse4 can be experimentally depleted in mRNA processing pat1Δ or xrn1Δ mutants. The peripheral Cse4 molecules do not template outer kinetochore components. This study suggests an inner kinetochore plate at the centromere-microtubule interface in budding yeast and yields information on the number of Ndc80 molecules at the microtubule attachment site.


Assuntos
Centrômero/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Histonas/metabolismo , Cinetocoros/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Exorribonucleases/genética , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos , Estrutura Quaternária de Proteína , Proteínas de Ligação a RNA/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fuso Acromático/metabolismo
12.
Mol Biol Cell ; 24(24): 3909-19, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24152737

RESUMO

In mitosis, the pericentromere is organized into a spring composed of cohesin, condensin, and a rosette of intramolecular chromatin loops. Cohesin and condensin are enriched in the pericentromere, with spatially distinct patterns of localization. Using model convolution of computer simulations, we deduce the mechanistic consequences of their spatial segregation. Condensin lies proximal to the spindle axis, whereas cohesin is radially displaced from condensin and the interpolar microtubules. The histone deacetylase Sir2 is responsible for the axial position of condensin, while the radial displacement of chromatin loops dictates the position of cohesin. The heterogeneity in distribution of condensin is most accurately modeled by clusters along the spindle axis. In contrast, cohesin is evenly distributed (barrel of 500-nm width × 550-nm length). Models of cohesin gradients that decay from the centromere or sister cohesin axis, as previously suggested, do not match experimental images. The fine structures of cohesin and condensin deduced with subpixel localization accuracy reveal critical features of how these complexes mold pericentric chromatin into a functional spring.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Mitose/genética , Complexos Multiproteicos/metabolismo , Saccharomyces cerevisiae/genética , Fuso Acromático/genética , Centrômero/genética , Cromatina/genética , Simulação por Computador , Cinetocoros , Microtúbulos , Proteínas Nucleares/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Sirtuína 2/genética , Coesinas
13.
Cell Rep ; 3(6): 2168-78, 2013 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-23746449

RESUMO

Genetic interactions reveal the functional relationships between pairs of genes. In this study, we describe a method for the systematic generation and quantitation of triple mutants, termed triple-mutant analysis (TMA). We have used this approach to interrogate partially redundant pairs of genes in S. cerevisiae, including ASF1 and CAC1, two histone chaperones. After subjecting asf1Δ cac1Δ to TMA, we found that the Swi/Snf Rdh54 protein compensates for the absence of Asf1 and Cac1. Rdh54 more strongly associates with the chromatin apparatus and the pericentromeric region in the double mutant. Moreover, Asf1 is responsible for the synthetic lethality observed in cac1Δ strains lacking the HIRA-like proteins. A similar TMA was carried out after deleting both CLB5 and CLB6, cyclins that regulate DNA replication, revealing a strong functional connection to chromosome segregation. This approach can reveal functional redundancies that cannot be uncovered through traditional double-mutant analyses.


Assuntos
Cromossomos/genética , Cromossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Dano ao DNA , Replicação do DNA , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
J Cell Biol ; 200(6): 757-72, 2013 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-23509068

RESUMO

The mechanisms by which sister chromatids maintain biorientation on the metaphase spindle are critical to the fidelity of chromosome segregation. Active force interplay exists between predominantly extensional microtubule-based spindle forces and restoring forces from chromatin. These forces regulate tension at the kinetochore that silences the spindle assembly checkpoint to ensure faithful chromosome segregation. Depletion of pericentric cohesin or condensin has been shown to increase the mean and variance of spindle length, which have been attributed to a softening of the linear chromatin spring. Models of the spindle apparatus with linear chromatin springs that match spindle dynamics fail to predict the behavior of pericentromeric chromatin in wild-type and mutant spindles. We demonstrate that a nonlinear spring with a threshold extension to switch between spring states predicts asymmetric chromatin stretching observed in vivo. The addition of cross-links between adjacent springs recapitulates coordination between pericentromeres of neighboring chromosomes.


Assuntos
Cromatina/metabolismo , Segregação de Cromossomos/fisiologia , Cromossomos Fúngicos/metabolismo , Modelos Biológicos , Saccharomyces cerevisiae/metabolismo , Fuso Acromático/metabolismo
15.
Curr Biol ; 22(6): 471-81, 2012 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-22365852

RESUMO

BACKGROUND: Tension sensing of bioriented chromosomes is essential for the fidelity of chromosome segregation. The spindle assembly checkpoint (SAC) conveys lack of tension or attachment to the anaphase promoting complex. Components of the SAC (Bub1) phosphorylate histone H2A (S121) and recruit the protector of cohesin, Shugoshin (Sgo1), to the inner centromere. How the chromatin structural modifications of the inner centromere are integrated into the tension sensing mechanisms and the checkpoint are not known. RESULTS: We have identified a Bub1/Sgo1-dependent structural change in the geometry and dynamics of kinetochores and the pericentric chromatin upon reduction of microtubule dynamics. The cluster of inner kinetochores contract, whereas the pericentric chromatin and cohesin that encircle spindle microtubules undergo a radial expansion. Despite its increased spatial distribution, the pericentric chromatin is less dynamic. The change in dynamics is due to histone H2A phosphorylation and Sgo1 recruitment to the pericentric chromatin, rather than microtubule dynamics. CONCLUSIONS: Bub1 and Sgo1 act as a rheostat to regulate the chromatin spring and maintain force balance. Through histone H2A S121 phosphorylation and recruitment of Sgo1, Bub1 kinase softens the chromatin spring in response to changes in microtubule dynamics. The geometric alteration of all 16 kinetochores and pericentric chromatin reflect global changes in the pericentromeric region and provide mechanisms for mechanically amplifying damage at a single kinetochore microtubule.


Assuntos
Cromatina/metabolismo , Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Benomilo/farmacologia , Centrômero/metabolismo , DNA Fúngico/química , DNA Fúngico/metabolismo , Histonas/metabolismo , Cinetocoros/metabolismo , Modelos Biológicos , Proteínas Nucleares/genética , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Estresse Mecânico
16.
J Cell Biol ; 193(7): 1167-80, 2011 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-21708976

RESUMO

Sister chromatid cohesion provides the mechanistic basis, together with spindle microtubules, for generating tension between bioriented chromosomes in metaphase. Pericentric chromatin forms an intramolecular loop that protrudes bidirectionally from the sister chromatid axis. The centromere lies on the surface of the chromosome at the apex of each loop. The cohesin and condensin structural maintenance of chromosomes (SMC) protein complexes are concentrated within the pericentric chromatin, but whether they contribute to tension-generating mechanisms is not known. To understand how pericentric chromatin is packaged and resists tension, we map the position of cohesin (SMC3), condensin (SMC4), and pericentric LacO arrays within the spindle. Condensin lies proximal to the spindle axis and is responsible for axial compaction of pericentric chromatin. Cohesin is radially displaced from the spindle axis and confines pericentric chromatin. Pericentric cohesin and condensin contribute to spindle length regulation and dynamics in metaphase. Together with the intramolecular centromere loop, these SMC complexes constitute a molecular spring that balances spindle microtubule force in metaphase.


Assuntos
Adenosina Trifosfatases/fisiologia , Proteínas de Ciclo Celular/fisiologia , Centrômero/fisiologia , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/fisiologia , Proteínas de Ligação a DNA/fisiologia , Mitose/fisiologia , Complexos Multiproteicos/fisiologia , Saccharomycetales/metabolismo , Adenosina Trifosfatases/análise , Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/análise , Proteínas de Ciclo Celular/metabolismo , Centrômero/metabolismo , Centrômero/ultraestrutura , Cromatina/química , Cromatina/ultraestrutura , Proteínas Cromossômicas não Histona/análise , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/análise , Proteínas de Ligação a DNA/metabolismo , Microtúbulos/fisiologia , Conformação Molecular , Complexos Multiproteicos/análise , Complexos Multiproteicos/metabolismo , Saccharomycetales/citologia , Saccharomycetales/genética , Fuso Acromático/metabolismo , Fuso Acromático/fisiologia , Fuso Acromático/ultraestrutura , Coesinas
17.
Nat Biotechnol ; 29(4): 361-7, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21441928

RESUMO

Conditional temperature-sensitive (ts) mutations are valuable reagents for studying essential genes in the yeast Saccharomyces cerevisiae. We constructed 787 ts strains, covering 497 (∼45%) of the 1,101 essential yeast genes, with ∼30% of the genes represented by multiple alleles. All of the alleles are integrated into their native genomic locus in the S288C common reference strain and are linked to a kanMX selectable marker, allowing further genetic manipulation by synthetic genetic array (SGA)-based, high-throughput methods. We show two such manipulations: barcoding of 440 strains, which enables chemical-genetic suppression analysis, and the construction of arrays of strains carrying different fluorescent markers of subcellular structure, which enables quantitative analysis of phenotypes using high-content screening. Quantitative analysis of a GFP-tubulin marker identified roles for cohesin and condensin genes in spindle disassembly. This mutant collection should facilitate a wide range of systematic studies aimed at understanding the functions of essential genes.


Assuntos
Genes Essenciais , Genoma Fúngico , Saccharomyces cerevisiae/genética , Temperatura , Alelos , Bases de Dados Genéticas , Genes Fúngicos , Genes Letais , Engenharia Genética/métodos , Loci Gênicos , Espectrometria de Massas/métodos , Análise em Microsséries/métodos , Microscopia Confocal , Mutação , Fenótipo , Plasmídeos , RNA Mensageiro , Saccharomyces cerevisiae/crescimento & desenvolvimento , Análise de Célula Única , Tubulina (Proteína)/análise
18.
Mol Biol Cell ; 20(19): 4131-9, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19656849

RESUMO

The kinetochore is a complex protein-DNA assembly that provides the mechanical linkage between microtubules and the centromere DNA of each chromosome. Centromere DNA in all eukaryotes is wrapped around a unique nucleosome that contains the histone H3 variant CENP-A (Cse4p in Saccharomyces cerevisiae). Here, we report that the inner kinetochore complex (CBF3) is required for pericentric DNA looping at the Cse4p-containing nucleosome. DNA within the pericentric loop occupies a spatially confined area that is radially displaced from the interpolar central spindle. Microtubule-binding kinetochore complexes are not involved in pericentric DNA looping but are required for the geometric organization of DNA loops around the spindle microtubules in metaphase. Thus, the mitotic segregation apparatus is a composite structure composed of kinetochore and interpolar microtubules, the kinetochore, and organized pericentric DNA loops. The linkage of microtubule-binding to centromere DNA-looping complexes positions the pericentric chromatin loops and stabilizes the dynamic properties of individual kinetochore complexes in mitosis.


Assuntos
DNA Fúngico/metabolismo , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Nucleossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , DNA Fúngico/química , DNA Fúngico/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células Eucarióticas/metabolismo , Recuperação de Fluorescência Após Fotodegradação , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Mitose , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fuso Acromático/metabolismo
19.
Cell ; 135(5): 894-906, 2008 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-19041752

RESUMO

During mitosis, sister chromatids congress to the spindle equator and are subsequently segregated via attachment to dynamic kinetochore microtubule (kMT) plus ends. A major question is how kMT plus-end assembly is spatially regulated to achieve chromosome congression. Here we find in budding yeast that the widely conserved kinesin-5 sliding motor proteins, Cin8p and Kip1p, mediate chromosome congression by suppressing kMT plus-end assembly of longer kMTs. Of the two, Cin8p is the major effector and its activity requires a functional motor domain. In contrast, the depolymerizing kinesin-8 motor Kip3p plays a minor role in spatial regulation of yeast kMT assembly. Our analysis identified a model where kinesin-5 motors bind to kMTs, move to kMT plus ends, and upon arrival at a growing plus end promote net kMT plus-end disassembly. In conclusion, we find that length-dependent control of net kMT assembly by kinesin-5 motors yields a simple and stable self-organizing mechanism for chromosome congression.


Assuntos
Cinesinas/metabolismo , Cinetocoros/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Cromossomos Fúngicos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/genética , Proteínas Motores Moleculares , Mutação , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
20.
Curr Biol ; 18(2): 81-90, 2008 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-18211850

RESUMO

BACKGROUND: Cohesin proteins link sister chromatids and provide the basis for tension between bioriented sister chomatids in mitosis. Cohesin is concentrated at the centromere region of the chromosome despite the fact that sister centromeres can be separated by 800 nm in vivo. The function of cohesin at sites of separated DNA is unknown. RESULTS: We provide evidence that the kinetochore promotes the organization of pericentric chromatin into a cruciform in mitosis such that centromere-flanking DNA adopts an intramolecular loop, whereas sister-chromatid arms are paired intermolecularly. Visualization of cohesin subunits by fluorescence microscopy revealed a cylindrical structure that encircles the central spindle and spans the distance between sister kinetochores. Kinetochore assembly at the apex of the loop initiates intrastrand loop formation that extends approximately 25 kb (12.5 kb on either side of the centromere). Two centromere loops (one from each sister chromatid) are stretched between the ends of sister-kinetochore microtubules along the spindle axis. At the base of the loop there is a transition to intermolecular sister-chromatid pairing. CONCLUSIONS: The C loop conformation reveals the structural basis for sister-kinetochore clustering in budding yeast and for kinetochore biorientation and thus resolves the paradox of maximal interstrand separation in regions of highest cohesin concentration.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Mitose/fisiologia , Proteínas Nucleares/metabolismo , Fenômenos Biomecânicos , Conformação Molecular , Saccharomyces cerevisiae , Fuso Acromático/metabolismo , Coesinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...