Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 10(11): 2829-2835, 2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31070031

RESUMO

The performance of kesterite (Cu2ZnSn(S,Se)4, CZTSSe) solar cells is hindered by low open circuit voltage ( Voc). The commonly used metric for Voc-deficit, namely, the difference between the absorber band gap and qVoc, is not well-defined for compositionally complex absorbers like kesterite where the bandgap is hard to determine. Here, nonradiative voltage losses are analyzed by measuring the radiative limit of Voc, using external quantum efficiency (EQE) and electroluminescence (EL) spectra, without relying on precise knowledge of the bandgap. The method is applied to a series of Cu2ZnSn(S,Se)4 devices with Sn content variation from 27.6 to 32.9 at. % and a corresponding Voc range from 423 to 465 mV. Surprisingly, the lowest nonradiative loss, and hence the highest external luminescence efficiency (QELED), were obtained for the device with the lowest Voc. The trend is assigned to better interface quality between absorber and CdS buffer layer at lower Sn content.

2.
Sci Technol Adv Mater ; 19(1): 683-692, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30294395

RESUMO

The performance improvement of conventional CdTe solar cells is mainly limited by doping concentration and minority carrier life time. Alloying CdTe with an isovalent element changes its properties, for example its band gap and behaviour of dopants, which has a significant impact on its performance as a solar cell absorber. In this work, the structural, optical, and electronic properties of CdTe1-xSex films are examined for different Se concentrations. The band gap of this compound changes with composition with a minimum of 1.40 eV for x = 0.3. We show that with increasing x, the lattice constant of CdTe1-xSex decreases, which can influence the solubility of dopants. We find that alloying CdTe with Se changes the effect of Cu doping on the p-type conductivity in CdTe1-xSex, reducing the achievable charge carrier concentration with increasing x. Using a front surface CdTe1-xSex layer, compositional, structural and electronic grading is introduced to solar cells. The efficiency is increased, mostly due to an increase in the short-circuit current density caused by a combination of lower band gap and a better interface between the absorber and window layer, despite a loss in the open-circuit voltage caused by the lower band gap and reduced charge carrier concentration.

3.
Front Chem ; 6: 5, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29435446

RESUMO

The introduction of the alkaline-earth element Magnesium (Mg) into Cu2ZnSn(S,Se)4 (CTZSSe) is explored in view of potential photovoltaic applications. Cu2Zn1-xMgxSn(S,Se)4 absorber layers with variable Mg content x = 0…1 are deposited using the solution approach with dimethyl sulfoxide solvent followed by annealing in selenium atmosphere. For heavy Mg alloying with x = 0.55…1 the phase separation into Cu2SnSe3, MgSe2, MgSe and SnSe2 occurs in agreement with literature predictions. A lower Mg content of x = 0.04 results in the kesterite phase as confirmed by XRD and Raman spectroscopy. A photoluminescence maximum is red-shifted by 0.02 eV as compared to the band-gap and a carrier concentration NCV of 1 × 1016 cm-3 is measured for a Mg-containing kesterite solar cell device. Raman spectroscopy indicates that structural defects can be reduced in Mg-containing absorbers as compared to the Mg-free reference samples, however the best device efficiency of 7.2% for a Mg-containing cell measured in this study is lower than those frequently reported for the conventional Na doping.

4.
RSC Adv ; 8(36): 20304-20313, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35541690

RESUMO

To obtain full advantage of state-of-the-art solid-state lithium-based batteries, produced by sequential deposition of high voltage cathodes and promising oxide-based electrolytes, the current collector must withstand high temperatures (>600 °C) in oxygen atmosphere. This imposes severe restrictions on the choice of materials for the first layer, usually the cathode current collector. It not only must be electrochemically stable at high voltage, but also remain conductive upon deposition and annealing of the subsequent layers without presenting a strong diffusion of its constituent elements into the cathode. A novel cathode current collector based on a Ni-Al-Cr superalloy with target composition Ni0.72Al0.18Cr0.10 is presented here. The suitability of this superalloy as a high voltage current collector was verified by determining its electrochemical stability at high voltage by crystallizing and cycling of LiCoO2 directly onto it.

5.
Small ; 12(38): 5339-5346, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27490026

RESUMO

Quantum efficiency measurements of state of the art Cu(In,Ga)Se2 (CIGS) thin film solar cells reveal current losses in the near infrared spectral region. These losses can be ascribed to inadequate optical absorption or poor collection of photogenerated charge carriers. Insight on the limiting mechanism is crucial for the development of more efficient devices. The electron beam induced current measurement technique applied on device cross-sections promises an experimental access to depth resolved information about the charge carrier collection probability. Here, this technique is used to show that charge carrier collection in CIGS deposited by multistage co-evaporation at low temperature is efficient over the optically active region and collection losses are minor as compared to the optical ones. Implications on the favorable absorber design are discussed. Furthermore, it is observed that the measurement is strongly affected by cross-section surface recombination and an accurate determination of the collection efficiency is not possible. Therefore it is proposed and shown that the use of an Al2 O3 layer deposited onto the cleaved cross-section significantly improves the accuracy of the measurement by reducing the surface recombination. A model for the passivation mechanism is presented and the passivation concept is extended to other solar cell technologies such as CdTe and Cu2 (Zn,Sn)(S,Se)4 .

6.
ACS Appl Mater Interfaces ; 7(22): 12141-6, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-25985349

RESUMO

Solution processing of Cu2ZnSn(S,Se)4 (CZTSSe)-kesterite solar cells is attractive because of easy manufacturing using readily available metal salts. The solution-processed CZTSSe absorbers, however, often suffer from poor morphology with a bilayer structure, exhibiting a dense top crust and a porous bottom layer, albeit yielding efficiencies of over 10%. To understand whether the cell performance is limited by this porous layer, a systematic compositional study using (scanning) transmission electron microscopy ((S)TEM) and energy-dispersive X-ray spectroscopy of the dimethyl sulfoxide processed CZTSSe absorbers is presented. TEM investigation revealed a thin layer of CdS that is formed around the small CZTSSe grains in the porous bottom layer during the chemical bath deposition step. This CdS passivation is found to be beneficial for the cell performance as it increases the carrier collection and facilitates the electron transport. Electron-beam-induced current measurements reveal an enhanced carrier collection for this buried region as compared to reference cells with evaporated CdS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...