Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biophys J ; 117(8): 1467-1475, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31542223

RESUMO

Mitral valve diseases affect ∼3% of the population and are the most common reasons for valvular surgery because no drug-based treatments exist. Inheritable genetic mutations have now been established as the cause of mitral valve insufficiency, and four different missense mutations in the filamin A gene (FLNA) have been found in patients suffering from nonsyndromic mitral valve dysplasia (MVD). The filamin A (FLNA) protein is expressed, in particular, in endocardial endothelia during fetal valve morphogenesis and is key in cardiac development. The FLNA-MVD-causing mutations are clustered in the N-terminal region of FLNA. How the mutations in FLNA modify its structure and function has mostly remained elusive. In this study, using NMR spectroscopy and interaction assays, we investigated FLNA-MVD-causing V711D and H743P mutations. Our results clearly indicated that both mutations almost completely destroyed the folding of the FLNA5 domain, where the mutation is located, and also affect the folding of the neighboring FLNA4 domain. The structure of the neighboring FLNA6 domain was not affected by the mutations. These mutations also completely abolish FLNA's interactions with protein tyrosine phosphatase nonreceptor type 12, which has been suggested to contribute to the pathogenesis of FLNA-MVD. Taken together, our results provide an essential structural and molecular framework for understanding the molecular bases of FLNA-MVD, which is crucial for the development of new therapies to replace surgery.


Assuntos
Filaminas/química , Prolapso da Valva Mitral/genética , Mutação de Sentido Incorreto , Dobramento de Proteína , Sítios de Ligação , Filaminas/genética , Filaminas/metabolismo , Humanos , Simulação de Dinâmica Molecular , Ligação Proteica , Proteína Tirosina Fosfatase não Receptora Tipo 12/metabolismo
2.
Structure ; 27(1): 102-112.e4, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30344108

RESUMO

Filamin A (FLNa), expressed in endocardial endothelia during fetal valve morphogenesis, is key in cardiac development. Missense mutations in FLNa cause non-syndromic mitral valve dysplasia (FLNA-MVD). Here, we aimed to reveal the currently unknown underlying molecular mechanism behind FLNA-MVD caused by the FLNa P637Q mutation. The solved crystal structure of the FLNa3-5 P637Q revealed that this mutation causes only minor structural changes close to mutation site. These changes were observed to significantly affect FLNa's ability to transmit cellular force and to interact with its binding partner. The performed steered molecular dynamics simulations showed that significantly lower forces are needed to split domains 4 and 5 in FLNA-MVD than with wild-type FLNa. The P637Q mutation was also observed to interfere with FLNa's interactions with the protein tyrosine phosphatase PTPN12. Our results provide a crucial step toward understanding the molecular bases behind FLNA-MVD, which is critical for the development of drug-based therapeutics.


Assuntos
Filaminas/química , Doenças das Valvas Cardíacas/genética , Mutação de Sentido Incorreto , Sítios de Ligação , Filaminas/genética , Filaminas/metabolismo , Humanos , Valva Mitral/patologia , Simulação de Dinâmica Molecular , Ligação Proteica , Proteína Tirosina Fosfatase não Receptora Tipo 12/metabolismo
3.
Sci Rep ; 7(1): 4218, 2017 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-28652603

RESUMO

Cells' ability to sense mechanical cues in their environment is crucial for fundamental cellular processes, leading defects in mechanosensing to be linked to many diseases. The actin cross-linking protein Filamin has an important role in the conversion of mechanical forces into biochemical signals. Here, we reveal how mutations in Filamin genes known to cause Larsen syndrome and Frontometaphyseal dysplasia can affect the structure and therefore function of Filamin domains 16 and 17. Employing X-ray crystallography, the structure of these domains was first solved for the human Filamin B. The interaction seen between domains 16 and 17 is broken by shear force as revealed by steered molecular dynamics simulations. The effects of skeletal dysplasia associated mutations of the structure and mechanosensing properties of Filamin were studied by combining various experimental and theoretical techniques. The results showed that Larsen syndrome associated mutations destabilize or even unfold domain 17. Interestingly, those Filamin functions that are mediated via domain 17 interactions with other proteins are not necessarily affected as strongly interacting peptide binding to mutated domain 17 induces at least partial domain folding. Mutation associated to Frontometaphyseal dysplasia, in turn, transforms 16-17 fragment from compact to an elongated form destroying the force-regulated domain pair.


Assuntos
Filaminas/genética , Testa/anormalidades , Mecanotransdução Celular/genética , Simulação de Dinâmica Molecular , Mutação , Osteocondrodisplasias/genética , Actinas/metabolismo , Sítios de Ligação/genética , Cristalografia por Raios X , Filaminas/química , Filaminas/metabolismo , Humanos , Osteocondrodisplasias/metabolismo , Ligação Proteica , Domínios Proteicos
4.
Metabolism ; 65(12): 1731-1742, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27832861

RESUMO

Accumulating evidence suggests that dysregulated glycerol metabolism contributes to the pathophysiology of obesity and type 2 diabetes. Glycerol efflux from adipocytes is regulated by the aquaglyceroporin AQP7, which is translocated upon hormone stimulation. Here, we propose a molecular mechanism where the AQP7 mobility in adipocytes is dependent on perilipin 1 and protein kinase A. Biochemical analyses combined with ex vivo studies in human primary adipocytes, demonstrate that perilipin 1 binds to AQP7, and that catecholamine activated protein kinase A phosphorylates the N-terminus of AQP7, thereby reducing complex formation. Together, these findings are indicative of how glycerol release is controlled in adipocytes, and may pave the way for the future design of drugs against human metabolic pathologies.


Assuntos
Adipócitos/metabolismo , Aquaporinas/metabolismo , Perilipina-1/metabolismo , Adipócitos/citologia , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Glicerol/metabolismo , Humanos , Fosforilação , Ligação Proteica
5.
FEBS Lett ; 587(4): 305-10, 2013 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-23313254

RESUMO

Multifunctional enzyme type 2 (MFE-2) forms part of the fatty acid ß-oxidation pathway in peroxisomes. MFE-2s from various species reveal proteins with structurally homologous functional domains assembled in different compilations. Crystal structures of all domain types are known. SAXS data from human, fruit fly and Caenorhabditiselegans MFE-2s and their constituent domains were collected, and both ab initio and rigid body models constructed. Location of the putative substrate binding helper domain SCP-2L (sterol carrier protein 2-like), which is not part of MFE-2 protein in every species and not seen as part of any previous MFE-2 structures, was determined. The obtained models of human and C. elegans MFE-2 lend a direct structural support to the idea of the biological role of SCP-2L.


Assuntos
17-Hidroxiesteroide Desidrogenases/química , 3-Hidroxiacil-CoA Desidrogenases/química , Oxirredutases do Álcool/química , Proteínas de Caenorhabditis elegans/química , Carbono-Oxigênio Liases/química , Proteínas de Drosophila/química , Enoil-CoA Hidratase/química , Hidroliases/química , Modelos Moleculares , Complexos Multienzimáticos/química , 17-Hidroxiesteroide Desidrogenases/genética , 17-Hidroxiesteroide Desidrogenases/metabolismo , 3-Hidroxiacil-CoA Desidrogenases/genética , 3-Hidroxiacil-CoA Desidrogenases/metabolismo , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Animais , Caenorhabditis elegans/enzimologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Carbono-Oxigênio Liases/genética , Carbono-Oxigênio Liases/metabolismo , Proteínas de Transporte/química , Dimerização , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Enoil-CoA Hidratase/genética , Enoil-CoA Hidratase/metabolismo , Humanos , Hidroliases/genética , Hidroliases/metabolismo , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Proteína Multifuncional do Peroxissomo-2 , Peroxissomos/enzimologia , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espalhamento a Baixo Ângulo , Solubilidade , Especificidade da Espécie , Síncrotrons , Difração de Raios X
6.
Biochem J ; 435(3): 771-81, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21320074

RESUMO

All of the peroxisomal ß-oxidation pathways characterized thus far house at least one MFE (multifunctional enzyme) catalysing two out of four reactions of the spiral. MFE type 2 proteins from various species display great variation in domain composition and predicted substrate preference. The gene CG3415 encodes for Drosophila melanogaster MFE-2 (DmMFE-2), complements the Saccharomyces cerevisiae MFE-2 deletion strain, and the recombinant protein displays both MFE-2 enzymatic activities in vitro. The resolved crystal structure is the first one for a full-length MFE-2 revealing the assembly of domains, and the data can also be transferred to structure-function studies for other MFE-2 proteins. The structure explains the necessity of dimerization. The lack of substrate channelling is proposed based on both the structural features, as well as by the fact that hydration and dehydrogenation activities of MFE-2, if produced as separate enzymes, are equally efficient in catalysis as the full-length MFE-2.


Assuntos
Oxirredutases do Álcool/metabolismo , Carbono-Oxigênio Liases/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Enoil-CoA Hidratase/metabolismo , Complexos Multienzimáticos/metabolismo , Oxirredutases/metabolismo , Oxirredutases do Álcool/genética , Animais , Carbono-Oxigênio Liases/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Enoil-CoA Hidratase/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Enzimológica da Expressão Gênica , Modelos Moleculares , Complexos Multienzimáticos/genética , Oxirredutases/genética , Plasmídeos , Conformação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...