Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 127: 111325, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38070468

RESUMO

Dapagliflozin (DPG) is a sodium-glucose co-transporter 2 inhibitor that is commonly used in the treatment of type 2 diabetes. However, studies have shown that DPG has a protective effect under a variety of experimental conditions through its antioxidative and anti-inflammatory properties. DPG's effect on experimental hepatotoxicity caused by arsenic trioxide (ATO) has yet to be investigated. The purpose of this study was to investigate the protective effect of DPG in preventing hepatic damage caused by ATO and discover the underlying mechanisms. The effect of DPG (1 mg/kg, orally) on ATO (5 mg/kg, i.p.)-induced hepatic injury was evaluated in rats. Serum liver function parameters, as well as oxidative stress biomarkers and inflammatory cytokine levels were assessed. Histopathological changes in the liver were detected using H&E staining. Using Western blotting and PCR techniques, the molecular mechanisms of DPG in ameliorating hepatic injury were investigated. DPG improved liver function by inhibiting histopathological changes, decreasing levels of hepatic function and toxicity parameters measured in both serum and tissues, and exhibiting antioxidant and anti-inflammatory effects, according to the findings. Consistent with the PCR results, DPG also decreased the expression of LC3-II, micro-RNA-122, and micro-RNA-21 while increased the expression of SOCS3. Furthermore, according to western blotting results, DPG was able to reduce the protein expression of AKT, mTOR, PI3K, and STAT3. Although further clinical research is necessary, this study highlights the potential of DPG in preventing liver damage in a rat model of hepatotoxicity induced by ATO.


Assuntos
Arsenicais , Compostos Benzidrílicos , Doença Hepática Induzida por Substâncias e Drogas , Diabetes Mellitus Tipo 2 , Glucosídeos , MicroRNAs , Ratos , Animais , Trióxido de Arsênio/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteína Supressora de Tumor p53/metabolismo , MicroRNAs/genética , MicroRNAs/farmacologia , Arsenicais/efeitos adversos , Arsenicais/metabolismo , Óxidos , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Antioxidantes/uso terapêutico , Antioxidantes/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/farmacologia , Apoptose
2.
Saudi Med J ; 42(2): 151-160, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33563733

RESUMO

OBJECTIVES: To determine the influence of caffeine on pharmacokinetics and pharmacodynamics of pioglitazone (PIO) in diabetic rats. METHODS: This was a preclinical study conducted in the College of Pharmacy, Najran University, Saudi Arabia, using 5 groups of Wistar rats: normal rats, untreated diabetic rats, diabetic rats + caffeine (20 mg/kg), diabetic rats + PIO (10 mg/kg), and diabetic rats + PIO (10 mg/kg) + caffeine (20 mg/kg). The drugs were administered for 14 days, and fasting plasma glucose concentrations were determined on the first day, and thereafter at weekly intervals. On day 14, rat sacrifice was followed with assay of levels of biomarkers. To estimate the pharmacokinetic parameters, the diabetic animals were assigned to 2 groups: one group received PIO (10 mg/kg), while the other received PIO + caffeine (20 mg/kg). Blood samples were drawn from the retro-orbital plexus at different time intervals, and pharmacokinetic parameters were measured using high performance liquid chromatography. RESULTS: Caffeine caused statistically marked increases in area under the curve, Cmax, Tmax, and half-life of PIO, and decreased clearance. Combination of PIO and caffeine produced a synergistic effect on percentage reduction in blood glucose, with 67.1% reductions observed on day 7 and 68.9% reductions observed on day 14. Liver and cardiac biomarkers were significantly decreased, suggesting cardioprotective and hepatoprotective effects. CONCLUSION: Co-administration of PIO with caffeine enhances its antidiabetic effect, probably due to enhanced bioavailability of PIO, leading to clinical benefits in diabetic patients.


Assuntos
Cafeína , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Hipoglicemiantes , Pioglitazona , Tiazolidinedionas , Animais , Cafeína/farmacologia , Humanos , Hipoglicemiantes/farmacocinética , Pioglitazona/farmacocinética , Ratos , Ratos Wistar , Arábia Saudita
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...