Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Obes (Lond) ; 41(3): 381-389, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27924082

RESUMO

BACKGROUND/OBJECTIVES: The combination of energy dense diets and reduced energy expenditure in modern society has escalated the prevalence of obesity and obesity-related comorbidities. Among these disease states, type-2 diabetics (T2D) are disproportionately associated with obesity, suggesting a shared etiology. In conjunction with defects in hormonal and inflammatory states, obesity and T2D are also characterized by dysbiosis. METHODS: We have recently described the beneficial effects of duodenal nutrient exclusion, as induced by the duodenal endoluminal sleeve (DES); including body weight loss, prevented fat mass accumulation, and improved glucose tolerance in the ZDF rat, a rodent model of obesity and type-2 diabetes (T2D). To assess the relative role of DES on hindgut microbiota in the context of these metabolic changes, we analyzed cecal samples from rats implanted with a duodenal endoluminal sleeve (DES), or a sham control of this procedure. A group of pair-fed (pf) sham controls was also included to account for changes induced by reduced body weight and food intake. RESULTS: Analysis of hindgut microbiota following DES in the ZDF rat elucidated discrete changes in several microbial populations including a reduction in Paraprevotella family members of the Clostridiales order along with an increase in Akkermansia muciniphila and species of the Allobaculum and Bifidobacterium genera. CONCLUSIONS: Altogether, these observations suggest that like Roux-en Y gastric bypass (RYGB) and Metformin, regulation of gut microbiota may be a contributing factor to the therapeutic effects of DES.


Assuntos
Diabetes Mellitus Tipo 2/patologia , Duodeno/cirurgia , Disbiose/patologia , Microbioma Gastrointestinal , Hipoglicemiantes/farmacologia , Metformina/farmacologia , Obesidade/patologia , Animais , Modelos Animais de Doenças , Derivação Gástrica , Microbioma Gastrointestinal/efeitos dos fármacos , Ratos , Ratos Zucker , Redução de Peso
2.
Mol Metab ; 4(6): 437-60, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26042199

RESUMO

BACKGROUND: The gastrointestinal peptide hormone ghrelin was discovered in 1999 as the endogenous ligand of the growth hormone secretagogue receptor. Increasing evidence supports more complicated and nuanced roles for the hormone, which go beyond the regulation of systemic energy metabolism. SCOPE OF REVIEW: In this review, we discuss the diverse biological functions of ghrelin, the regulation of its secretion, and address questions that still remain 15 years after its discovery. MAJOR CONCLUSIONS: In recent years, ghrelin has been found to have a plethora of central and peripheral actions in distinct areas including learning and memory, gut motility and gastric acid secretion, sleep/wake rhythm, reward seeking behavior, taste sensation and glucose metabolism.

3.
Diabetologia ; 55(2): 457-67, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22002007

RESUMO

AIMS/HYPOTHESIS: Diminished cortical filamentous actin (F-actin) has been implicated in skeletal muscle insulin resistance, yet the mechanism(s) is unknown. Here we tested the hypothesis that changes in membrane cholesterol could be a causative factor, as organised F-actin structure emanates from cholesterol-enriched raft microdomains at the plasma membrane. METHODS: Skeletal muscle samples from high-fat-fed animals and insulin-sensitive and insulin-resistant human participants were evaluated. The study also used L6 myotubes to directly determine the impact of fatty acids (FAs) on membrane/cytoskeletal variables and insulin action. RESULTS: High-fat-fed insulin-resistant animals displayed elevated levels of membrane cholesterol and reduced F-actin structure compared with normal chow-fed animals. Moreover, human muscle biopsies revealed an inverse correlation between membrane cholesterol and whole-body glucose disposal. Palmitate-induced insulin-resistant myotubes displayed membrane cholesterol accrual and F-actin loss. Cholesterol lowering protected against the palmitate-induced defects, whereas characteristically measured defects in insulin signalling were not corrected. Conversely, cholesterol loading of L6 myotube membranes provoked a palmitate-like cytoskeletal/GLUT4 derangement. Mechanistically, we observed a palmitate-induced increase in O-linked glycosylation, an end-product of the hexosamine biosynthesis pathway (HBP). Consistent with HBP activity affecting the transcription of various genes, we observed an increase in Hmgcr, a gene that encodes 3-hydroxy-3-methyl-glutaryl coenzyme A reductase, the rate-limiting enzyme in cholesterol synthesis. In line with increased HBP activity transcriptionally provoking a membrane cholesterol-based insulin-resistant state, HBP inhibition attenuated Hmgcr expression and prevented membrane cholesterol accrual, F-actin loss and GLUT4/glucose transport dysfunction. CONCLUSIONS/INTERPRETATION: Our results suggest a novel cholesterolgenic-based mechanism of FA-induced membrane/cytoskeletal disorder and insulin resistance.


Assuntos
Actinas/metabolismo , Colesterol/metabolismo , Glucose/metabolismo , Adulto , Animais , Transporte Biológico , Biópsia por Agulha/métodos , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Ácidos Graxos/metabolismo , Feminino , Humanos , Insulina/metabolismo , Masculino , Microdomínios da Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , Ácido Palmítico/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...