Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 114(9): 2166-2170, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28167765

RESUMO

Carbon dioxide is an essential atmospheric component in martian climate models that attempt to reconcile a faint young sun with planetwide evidence of liquid water in the Noachian and Early Hesperian. In this study, we use mineral and contextual sedimentary environmental data measured by the Mars Science Laboratory (MSL) Rover Curiosity to estimate the atmospheric partial pressure of CO2 (PCO2) coinciding with a long-lived lake system in Gale Crater at ∼3.5 Ga. A reaction-transport model that simulates mineralogy observed within the Sheepbed member at Yellowknife Bay (YKB), by coupling mineral equilibria with carbonate precipitation kinetics and rates of sedimentation, indicates atmospheric PCO2 levels in the 10s mbar range. At such low PCO2 levels, existing climate models are unable to warm Hesperian Mars anywhere near the freezing point of water, and other gases are required to raise atmospheric pressure to prevent lake waters from being lost to the atmosphere. Thus, either lacustrine features of Gale formed in a cold environment by a mechanism yet to be determined, or the climate models still lack an essential component that would serve to elevate surface temperatures, at least locally, on Hesperian Mars. Our results also impose restrictions on the potential role of atmospheric CO2 in inferred warmer conditions and valley network formation of the late Noachian.

2.
Astrobiology ; 12(1): 3-8, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22181553

RESUMO

M stars comprise 80% of main sequence stars, so their planetary systems provide the best chance for finding habitable planets, that is, those with surface liquid water. We have modeled the broadband albedo or reflectivity of water ice and snow for simulated planetary surfaces orbiting two observed red dwarf stars (or M stars), using spectrally resolved data of Earth's cryosphere. The gradual reduction of the albedos of snow and ice at wavelengths greater than 1 µm, combined with M stars emitting a significant fraction of their radiation at these same longer wavelengths, means that the albedos of ice and snow on planets orbiting M stars are much lower than their values on Earth. Our results imply that the ice/snow albedo climate feedback is significantly weaker for planets orbiting M stars than for planets orbiting G-type stars such as the Sun. In addition, planets with significant ice and snow cover will have significantly higher surface temperatures for a given stellar flux if the spectral variation of cryospheric albedo is considered, which in turn implies that the outer edge of the habitable zone around M stars may be 10-30% farther away from the parent star than previously thought.


Assuntos
Exobiologia , Meio Ambiente Extraterreno/química , Gelo , Planetas , Neve/química , Astros Celestes/química , Clima
3.
Science ; 332(6031): 838-41, 2011 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-21512003

RESUMO

Shallow Radar soundings from the Mars Reconnaissance Orbiter reveal a buried deposit of carbon dioxide (CO(2)) ice within the south polar layered deposits of Mars with a volume of 9500 to 12,500 cubic kilometers, about 30 times that previously estimated for the south pole residual cap. The deposit occurs within a stratigraphic unit that is uniquely marked by collapse features and other evidence of interior CO(2) volatile release. If released into the atmosphere at times of high obliquity, the CO(2) reservoir would increase the atmospheric mass by up to 80%, leading to more frequent and intense dust storms and to more regions where liquid water could persist without boiling.


Assuntos
Gelo-Seco , Marte , Atmosfera , Dióxido de Carbono , Temperatura Baixa , Meio Ambiente Extraterreno , Gelo , Água
4.
Astrobiology ; 7(1): 30-65, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17407403

RESUMO

Stable, hydrogen-burning, M dwarf stars make up about 75% of all stars in the Galaxy. They are extremely long-lived, and because they are much smaller in mass than the Sun (between 0.5 and 0.08 M(Sun)), their temperature and stellar luminosity are low and peaked in the red. We have re-examined what is known at present about the potential for a terrestrial planet forming within, or migrating into, the classic liquid-surface-water habitable zone close to an M dwarf star. Observations of protoplanetary disks suggest that planet-building materials are common around M dwarfs, but N-body simulations differ in their estimations of the likelihood of potentially habitable, wet planets that reside within their habitable zones, which are only about one-fifth to 1/50th of the width of that for a G star. Particularly in light of the claimed detection of the planets with masses as small as 5.5 and 7.5 M(Earth) orbiting M stars, there seems no reason to exclude the possibility of terrestrial planets. Tidally locked synchronous rotation within the narrow habitable zone does not necessarily lead to atmospheric collapse, and active stellar flaring may not be as much of an evolutionarily disadvantageous factor as has previously been supposed. We conclude that M dwarf stars may indeed be viable hosts for planets on which the origin and evolution of life can occur. A number of planetary processes such as cessation of geothermal activity or thermal and nonthermal atmospheric loss processes may limit the duration of planetary habitability to periods far shorter than the extreme lifetime of the M dwarf star. Nevertheless, it makes sense to include M dwarf stars in programs that seek to find habitable worlds and evidence of life. This paper presents the summary conclusions of an interdisciplinary workshop (http://mstars.seti.org) sponsored by the NASA Astrobiology Institute and convened at the SETI Institute.


Assuntos
Exobiologia , Planetas , Fenômenos Astronômicos , Astronomia , Ecossistema , Meio Ambiente Extraterreno , Origem da Vida
5.
Nature ; 446(7136): 646-9, 2007 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-17410170

RESUMO

For hundreds of years, scientists have tracked the changing appearance of Mars, first by hand drawings and later by photographs. Because of this historical record, many classical albedo patterns have long been known to shift in appearance over time. Decadal variations of the martian surface albedo are generally attributed to removal and deposition of small amounts of relatively bright dust on the surface. Large swaths of the surface (up to 56 million km2) have been observed to darken or brighten by 10 per cent or more. It is unknown, however, how these albedo changes affect wind circulation, dust transport and the feedback between these processes and the martian climate. Here we present predictions from a Mars general circulation model, indicating that the observed interannual albedo alterations strongly influence the martian environment. Results indicate enhanced wind stress in recently darkened areas and decreased wind stress in brightened areas, producing a positive feedback system in which the albedo changes strengthen the winds that generate the changes. The simulations also predict a net annual global warming of surface air temperatures by approximately 0.65 K, enhancing dust lifting by increasing the likelihood of dust devil generation. The increase in global dust lifting by both wind stress and dust devils may affect the mechanisms that trigger large dust storm initiation, a poorly understood phenomenon, unique to Mars. In addition, predicted increases in summertime air temperatures at high southern latitudes would contribute to the rapid and steady scarp retreat that has been observed in the south polar residual ice for the past four Mars years. Our results suggest that documented albedo changes affect recent climate change and large-scale weather patterns on Mars, and thus albedo variations are a necessary component of future atmospheric and climate studies.

7.
Astrobiology ; 5(6): 663-89, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16379524

RESUMO

In October 2004, more than 130 terrestrial and planetary scientists met in Jackson Hole, WY, to discuss early Mars. The first billion years of martian geologic history is of particular interest because it is a period during which the planet was most active, after which a less dynamic period ensued that extends to the present day. The early activity left a fascinating geological record, which we are only beginning to unravel through direct observation and modeling. In considering this time period, questions outnumber answers, and one of the purposes of the meeting was to gather some of the best experts in the field to consider the current state of knowledge, ascertain which questions remain to be addressed, and identify the most promising approaches to addressing those questions. The purpose of this report is to document that discussion. Throughout the planet's first billion years, planetary-scale processes-including differentiation, hydrodynamic escape, volcanism, large impacts, erosion, and sedimentation-rapidly modified the atmosphere and crust. How did these processes operate, and what were their rates and interdependencies? The early environment was also characterized by both abundant liquid water and plentiful sources of energy, two of the most important conditions considered necessary for the origin of life. Where and when did the most habitable environments occur? Did life actually occupy them, and if so, has life persisted on Mars to the present? Our understanding of early Mars is critical to understanding how the planet we see today came to be.


Assuntos
Evolução Planetária , Meio Ambiente Extraterreno , Geologia , Marte , Conceitos Meteorológicos , Meio Ambiente Extraterreno/química , Geografia , Fenômenos Geológicos , Vida , Água
8.
Nature ; 435(7039): 184-8, 2005 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-15889086

RESUMO

The nature of the martian south polar cap has remained enigmatic since the first spacecraft observations. In particular, the presence of a perennial carbon dioxide ice cap, the formation of a vast area of black 'slab ice' known as the Cryptic region and the asymmetric springtime retreat of the cap have eluded explanation. Here we present observations and climate modelling that indicate the south pole of Mars is characterized by two distinct regional climates that are the result of dynamical forcing by the largest southern impact basins, Argyre and Hellas. The style of surface frost deposition is controlled by these regional climates. In the cold and stormy conditions that exist poleward of 60 degrees S and extend 180 degrees in longitude west from the Mountains of Mitchel (approximately 30 degrees W), surface frost accumulation is dominated by precipitation. In the opposite hemisphere, the polar atmosphere is relatively warm and clear and frost accumulation is dominated by direct vapour deposition. It is the differences in these deposition styles that determine the cap albedo.

9.
Appl Opt ; 43(22): 4436-45, 2004 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-15298418

RESUMO

We have designed and built a miniature near-IR tunable diode laser (TDL) spectrometer for measuring in situ the water vapor mixing ratio either in the Martian atmosphere or thermally evolved from Martian soil or ice samples. The laser hygrometer uses a thermoelectrically cooled single-mode distributed-feedback TDL at 1.87 microm to scan over a selected vibration-rotation line of both H2O and CO2 near 5327.3 cm(-1). A working prototype that weighs only 230 g has been built and used to generate spectra whose analysis demonstrates precision sensitivities as fine as 1 part in 10(6) by volume in 1 s or 0.1 part in 10(6) in 10 s at Martian pressures and temperatures. Absolute uncertainties of approximately 5% are calculated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...