Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(2): e24345, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38293441

RESUMO

Natural plant based fibres are being increasingly used in sustainable fibre reinforced composite applications in order to meet the demand of using environmentally friendly materials for composites. Fibre metal laminates (FMLs) are used in aerospace, automobile, marine and civil engineering applications, due to their excellent mechanical behaviors compared to traditional metals and their alloys. This study describes a novel fabrication of jute fibre reinforced aluminum metal laminates, using different jute fibre architectures (plain and twill fabric structures), wherein jute fibres were used in the skins and aluminum in the core layers. Jute fibres and aluminum sheets were chemically treated to enhance the compatibility and interfacial bonding at fibre-metals-matrix interfaces. FMLs were manufactured by hot pressing technique, after the application of wet lay-up process for the resin impregnation and they were further tested under tensile, flexural and impact loading conditions. While comparing results, the twill architecture showed improved tensile and flexural properties compared to plain fabric based FMLs. Chemical treatments on twill jute fibres and metal sheets further exceptionally enhanced the flexural properties (151 MPa flexural strength and 21.3 GPa modulus and they were increased by 186.5 % and 722.7 % respectively compared to the untreated jute fibre counterparts) of the laminates due to a significant improvement in the adhesion between the jute fibre and aluminum sheet after alkali treatment applied. Therefore, with these enhanced properties, jute based FML laminates can be used as sustainable composite materials in many structural applications.

2.
Discov Nano ; 19(1): 2, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38168725

RESUMO

Polypropylene (PP) is a versatile polymer with numerous applications that has undergone substantial changes in recent years, focusing on the demand for next-generation polymers. This article provides a comprehensive review of recent research in PP and its advanced functional applications. The chronological development and fundamentals of PP are mentioned. Notably, the incorporation of nanomaterial like graphene, MXene, nano-clay, borophane, silver nanoparticles, etc., with PP for advanced applications has been tabulated with their key features and challenges. The article also conducts a detailed analysis of advancements and research gaps within three key forms of PP: fiber, membrane, and matrix. The versatile applications of PP across sectors like biomedical, automotive, aerospace, and air/water filtration are highlighted. However, challenges such as limited UV resistance, bonding issues, and flammability are noted. The study emphasizes the promising potential of PP while addressing unresolved concerns, with the goal of guiding future research and promoting innovation in polymer applications.

3.
ACS Omega ; 8(48): 45164-45176, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38075799

RESUMO

Phase change materials (PCMs) are an extraordinary family of compounds that can store and release thermal energy during phase changes. In recent years, the incorporation of PCMs into textiles has attracted considerable interest, since it represents a unique way to improve the comfort and usefulness of textiles. This article examines the advancements achieved in the preparation, classifications, and environmental effects of PCM-integrated textiles, along with a roadmap for the future. Progress of different PCM has been reported including its pros and cons. In addition, fabrications of the PCM on the apparel have been highlighted. Moreover, this Review analyzed the positive environmental impact of PCM-integrated textiles including improved insulation, extended product lifespan, and energy savings along with negative effects like higher energy consumption in the manufacturing process, added chemical additives tending to have a negative impact on the environment, less disposal features textiles and many more with recent references. Moreover, the future outlook also reports more research on nanoencapsulation, making it energy efficient, ensuring affordability, and more applications in smart PCM textiles. It seeks to stimulate additional research, encourage innovation, and contribute to the creation of high-performance, energy-efficient textiles by investigating the possibilities of PCM-enhanced textiles. The future of PCM in textiles is hopeful, with continuous research and technological advances resolving the aforementioned difficulties.

4.
Heliyon ; 9(9): e19348, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37662727

RESUMO

The yellowfin snapper, Lutjanus xanthopinnis, was recorded as a newly described species in the Indo-Pacific region in 2015. However, the knowledge of its biology, biogeography and ecology is scarcely understood, and, hence, its current conservation status is categorized as Data Deficient. The mitochondrial cytochrome c oxidase subunit I (COI) gene was examined to confirm species identification. We also examined the COI gene haplotypes of L. xanthopinnis in Brunei Darussalam and Malaysia together with other waters, i.e., Bangladesh, Indonesia, Japan, Singapore, Sri Lanka and Taiwan. Our molecular analyses found that Brunei Darussalam and eastern Peninsular Malaysia samples were genetically similar. However, the former showed higher genetic diversity than the latter. The samples from these two sites also showed signatures of population expansion. Furthermore, identical haplotypes could be found in different locations, suggesting the absence of spatial genetic structure. On the other hand, Lutjanus lutjanus showed a population structure associated with geographical locations, i.e., western Pacific Ocean, Indian Ocean and Maluku in Indonesia.

5.
ACS Omega ; 8(27): 24311-24322, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37457457

RESUMO

Natural-based lignocellulose fibrous materials can be used as a sustainable alternative to conventional fossil-based fibers such as glass fibers, in lightweight fiber-reinforced thermoplastic composites for marine, automotive, aerospace, or other advanced applications. However, one of the main challenges in using natural fiber-based thermoplastic composites is the low mechanical performance of composite structures. This can be improved significantly through the development of an optimized novel fiber architecture with enhanced fiber packing properties, following a low-cost production process. In this context, this study demonstrates a less energy-consuming and cheaper manufacturing process, for developing highly individualized short jute fiber-based dry fiber preform architecture, with an improved fiber packing property. Short jute fibers were chemically treated with alkali and PVA sizing treatments in the processing of new fiber preform architectures, and they were used in manufacturing of ultimate short jute fiber/polypropylene (PP) thermoplastic composites. The newly developed short fiber thermoplastic composites showed a significant improvement in mechanical properties (tensile, flexural, and impact) compared to any other natural fiber architecture-based (woven, knitted, nonwoven, unidirectional, etc.) composites found in the literature. Due to the use of new fiber architecture, the developed composites' fiber content was observed to increase. In addition, the compatibility of jute fibers with the polypropylene matrix was strengthened with the application of chemical treatments on highly individualized jute fibers. These reasons were responsible for the enhancement of mechanical properties of developed composites. Micromechanics of the fibers in composites were evaluated using the modified rule of the mixture and Halpin-Tsai equations for stiffness prediction of the composites in order to develop a theoretical understanding of newly developed composites' mechanics. It is thought that the improved mechanical performance of short jute fiber/PP thermoplastic composites can extend the use of these composites in many load-demanding applications, wherein normally synthetic fiber composites are used.

6.
Mol Phylogenet Evol ; 186: 107832, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37263456

RESUMO

We examined the phylogeny and biogeography of the glassperch family Ambassidae (Teleostei), which is widely distributed in the freshwater, brackish and marine coastal habitats across the Indo-West Pacific region. We first built a comprehensive time-calibrated phylogeny of Ambassidae using five genes. We then used this tree to reconstruct the evolution of the salinity preference and ancestral areas. Our results indicate that the two largest genera of Ambassidae, Ambassis and Parambassis, are each not monophyletic. The most recent common ancestor of Ambassidae was freshwater adapted and lived in Australia about 56 million years ago. Three independent freshwater-to-marine transitions are inferred, but no marine-to-freshwater ones. To explain the distribution of ambassids, we hypothesise two long-distance marine dispersal events from Australia. A first event was towards Southeast Asia during the early Cenozoic, followed by a second one towards Africa during mid-Cenozoic. The phylogenetic signal associated with the salinity adaptation of these events was not detected, possibly because of the selective extinction of intermediate marine lineages. The Ambassidae shares two characteristics with other freshwater fish groups distributed in continental regions surrounding the Indian Ocean: They are too young to support the hypothesis that their distribution is the result of the fragmentation of Gondwana, but they did not retain the phylogenetic signal of their marine dispersal.


Assuntos
Peixes , Água Doce , Animais , Filogenia , Oceano Índico , Austrália , Peixes/genética
7.
Materials (Basel) ; 16(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36676319

RESUMO

Among various available 3D bioprinting techniques, extrusion-based three-dimensional (3D) bioprinting allows the deposition of cell-laden bioink, ensuring predefined scaffold architecture that may offer living tissue regeneration. With a combination of unique characteristics such as biocompatibility, less cell toxicity, and high water content, natural hydrogels are a great candidate for bioink formulation for the extrusion-based 3D bioprinting process. However, due to its low mechanical integrity, hydrogel faces a common challenge in maintaining structural integrity. To tackle this challenge, the rheological properties, specifically the shear thinning behavior (reduction of viscosity with increasing the applied load/shear rate on hydrogels) of a set of hybrid hydrogels composed of cellulose-derived nanofiber (TEMPO-mediated nano-fibrillated cellulose, TO-NFC), carboxymethyl cellulose (CMC), and commonly used alginate, were explored. A total of 46 compositions were prepared using higher (0.5% and 1.0%) and lower percentages (0.005% and 0.01%) of TO-NFC, 1-4% of CMC, and 1-4% of alginate to analyze the shear thinning factors such as the values of n and K, which were determined for each composition from the flow diagram and co-related with the 3D printability. The ability to tune shear thinning factors with various ratios of a nanofiber can help achieve a 3D bio-printed scaffold with defined scaffold architecture.

8.
J Micro Nanomanuf ; 10(2): 021001, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36439379

RESUMO

Three-dimensional bioprinting is a promising field in regenerating patient-specific tissues and organs due to its inherent capability of releasing biocompatible materials encapsulating living cells in a predefined location. Due to the diverse characteristics of tissues and organs in terms of microstructures and cell types, a multinozzle extrusion-based 3D bioprinting system has gained popularity. The investigations on interactions between various biomaterials and cell-to-material can provide relevant information about the scaffold geometry, cell viability, and proliferation. Natural hydrogels are frequently used in bioprinting materials because of their high-water content and biocompatibility. However, the dominancy of liquid characteristics of only-hydrogel materials makes the printing process challenging. Polycaprolactone (PCL) is the most frequently used synthetic biopolymer. It can provide mechanical integrity to achieve dimensionally accurate fabricated scaffolds, especially for hard tissues such as bone and cartilage scaffolds. In this paper, we explored various multimaterial bioprinting strategies with our recently proposed bio-inks and PCL intending to achieve dimensional accuracy and mechanical aspects. Various strategies were followed to coprint natural and synthetic biopolymers and interactions were analyzed between them. Printability of pure PCL with various molecular weights was optimized with respect to different process parameters such as nozzle temperature, printing pressure, printing speed, porosity, and bed temperature to coprint with natural hydrogels. The relationship between the rheological properties and shape fidelity of natural polymers was investigated with a set of printing strategies during coprinting with PCL. The successful application of this research can help achieve dimensionally accurate scaffolds.

9.
J Micro Nanomanuf ; 10(1): 011005, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36439989

RESUMO

Bioprinting for regenerative medicine has been gaining a lot of popularity in today's world. Despite being one of the rigorously studied fields, there are still several challenges yet to be solved. Geometric fidelity and mechanical complexities stand as roadblocks when it comes to the printability of the customized constructs. Exploring the rheological properties of the compositions helps us understand the physical and mechanical properties of the biomaterials which are closely tied to the printability of the filament and eventually, geometric fidelity of the constructs. To ensure the structural integrity of the constructs, viscosity enhancers such as carboxymethyl cellulose (CMC) and crosslinkers like CaCl2 and CaSO4 were used. These crosslinkers can be used before (precrosslinking) and after (postcrosslinking) the extrusion of considered compositions to investigate and compare the outcome. To do this, mixtures of CMC (viscosity enhancer), Alginate, and CaCl2 and CaSO4 (crosslinkers) were prepared at various concentrations maintaining minimum solid content (≤8%). Each composition was subjected to a set of rheological tests like flow curve for shear thinning behavior, three points thixotropic for recovery rate, and amplitude test for gelation point. Various geometric fidelity identification tests were conducted and correlated with their physical properties. Some compositions were used to fabricate large-scale constructs (in cm-scale) to demonstrate their capability. This research is a thorough investigation of compositions when they are introduced to crosslinkers and viscosity enhancers which can be crucial for the 3D printing world.

10.
Genes (Basel) ; 13(6)2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35741718

RESUMO

Grouper aquaculture is rapidly expanding in both tropical and subtropical regions. The presence of marine leeches (Pterobdella arugamensis; previously named Zeylanicobdella arugamensis) infesting cultured groupers, however, can have a fatal effect on grouper aquaculture production and cause significant economic loss. Understanding the marine leech's population structure is therefore important to determine its possible distributional origin and distributional mechanisms, which will help monitor and mitigate the infestation. In this study, a total of 84 marine leeches collected from cultured hybrid groupers Epinephelus spp. in Brunei Darussalam, Malaysia and Indonesia were identified as P. arugamensis, based on morphological and mitochondrial cytochrome c oxidase subunit I gene sequence analyses. These leech samples, together with additional sequences from the GenBank database, were grouped into four genetically distinct haplogroups: (1) Asia Pacific, (2) Borneo, (3) Surabaya and (4) Iran. The four populations were found to be highly diverged from each other. The results also suggested that the samples from the Asia Pacific population could be dispersed and transported from Indonesia.


Assuntos
Sanguessugas , Animais , Aquicultura , Ásia , Genética Populacional , Sanguessugas/genética , Filogenia
11.
Saudi J Biol Sci ; 29(1): 296-303, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35002422

RESUMO

A 105-day experimental trial was conducted to assess different levels of dietary Aleo vera extract supplementation on water quality parameters, proximate composition, growth performance and haematological parameters of fry Oreochromis niloticus. Four different percentages of dietary leaf extract powder of Aleo vera (ALE) with a basal feed, designated as, i.e., T0 (Control group; without ALE), T1 (1% ALE), T2 (2% ALE), and T3 (3% ALE). Fish fry was reared in concrete tanks (7.0 m, 1.6 m, 1.0: L, W, H; water volume 11.2 m3/tank), with an average initial weight 4.04 ± 0.03 g/ fry, and each treatment was triplicated. Fry was randomly distributed at a stocking rate of 450 individuals/ tanks. The water quality parameters revealed that temperature, pH, salinity, dissolved oxygen (DO) and nitrates were found in a promising range as given by FAO/WHO limits. However, the record values obtained for Electric Conductivity (EC), Total dissolved solids (TDS), and alkalinities were not found in all tanks' suitable range according to FAO/WHO limits. The results revealed a significant impact of different percentages of dietary ALE supplementation on fry's body composition and haematological parameters. Moreover, the final body weight, final body length, average daily weight gain (g), net weight gain (g) and specific growth rate (%) were significantly higher (p < 0.05) in T1 and T2 compared with T0 and T3 treatments. The poorest feed conversion ratio was recorded in the T2 group compared with other treatments. Thus, the current study provides information about the nutritional quality of Nile tilapia culturing in Pakistan.

12.
Genes (Basel) ; 12(12)2021 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-34946874

RESUMO

A broad-scale comparative phylogeographic and phylogenetic study of pennah croakers, mainly Pennahia anea, P. macrocephalus, and P. ovata was conducted to elucidate the mechanisms that may have driven the diversification of marine organisms in Southeast Asian waters. A total of 316 individuals from the three species, and an additional eight and six individuals of P. argentata and P. pawak were employed in this study. Two genetically divergent lineages each of P. argentata and P. anea (lineages L1 and L2) were respectively detected from the analyses based on mitochondrial cytochrome b gene data. Historical biogeography analysis with a multi-gene dataset revealed that Pennahia species most likely originated in the South China Sea and expanded into the eastern Indian Ocean, East China Sea, and northwestern Pacific Ocean through three separate range expansions. The main diversifications of Pennahia species occurred during Miocene and Pliocene periods, and the occurrences of lineage divergences within P. anea and P. argentata were during the Pleistocene, likely as a consequence of cyclical glaciations. The population expansions that occurred after the sea level rise might be the reason for the population homogeneity observed in P. macrocephalus and most P. anea L2 South China Sea populations. The structure observed between the two populations of P. ovata, and the restricted distributions of P. anea lineage L1 and P. ovata in the eastern Indian Ocean, might have been hampered by the northward flowing ocean current at the Malacca Strait and by the distribution of coral reefs or rocky bottoms. While our results support S. Ekman's center-of-origin hypothesis taking place in the South China Sea, the Malacca Strait serving as the center of overlap is a supplementary postulation for explaining the present-day high diversity of pennah croakers centered in these waters.


Assuntos
Perciformes/classificação , Animais , Sudeste Asiático , Variação Genética , Oceano Índico , Oceano Pacífico , Perciformes/genética , Filogenia , Filogeografia
13.
Int J Mol Sci ; 22(24)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34948280

RESUMO

Maintaining shape fidelity of 3D bio-printed scaffolds with soft biomaterials is an ongoing challenge. Here, a rheological investigation focusing on identifying useful physical and mechanical properties directly related to the geometric fidelity of 3D bio-printed scaffolds is presented. To ensure during- and post-printing shape fidelity of the scaffolds, various percentages of Carboxymethyl Cellulose (CMC) (viscosity enhancer) and different calcium salts (CaCl2 and CaSO4, physical cross-linkers) were mixed into alginate before extrusion to realize shape fidelity. The overall solid content of Alginate-Carboxymethyl Cellulose (CMC) was limited to 6%. A set of rheological tests, e.g., flow curves, amplitude tests, and three interval thixotropic tests, were performed to identify and compare the shear-thinning capacity, gelation points, and recovery rate of various compositions. The geometrical fidelity of the fabricated scaffolds was defined by printability and collapse tests. The effect of using multiple cross-linkers simultaneously was assessed. Various large-scale scaffolds were fabricated (up to 5.0 cm) using a pre-crosslinked hybrid. Scaffolds were assessed for the ability to support the growth of Escherichia coli using the Most Probable Number technique to quantify bacteria immediately after inoculation and 24 h later. This pre-crosslinking-based rheological property controlling technique can open a new avenue for 3D bio-fabrication of scaffolds, ensuring proper geometry.


Assuntos
Bioimpressão/métodos , Hidrogéis/síntese química , Alginatos , Materiais Biocompatíveis , Impressão Tridimensional/tendências , Reologia , Engenharia Tecidual/métodos , Alicerces Teciduais
14.
Sci Rep ; 11(1): 13357, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34172804

RESUMO

Benthic species, though ecologically important, are vulnerable to genetic loss and population size reduction due to impacts from fishing trawls. An assessment of genetic diversity and population structure is therefore needed to assist in a resource management program. To address this issue, the two-spined yellowtail stargazer (Uranoscopus cognatus) was collected within selected locations in the Indo-West Pacific (IWP). The partial mitochondrial DNA cytochrome c oxidase subunit 1 and the nuclear DNA recombination activating gene 1 were sequenced. Genetic diversity analyses revealed that the populations were moderately to highly diversified (haplotype diversity, H = 0.490-0.900, nucleotide diversity, π = 0.0010-0.0034) except sampling station (ST) 1 and 14. The low diversity level, however was apparent only in the matrilineal marker (H = 0.118-0.216; π = 0.0004-0.0008), possibly due to stochastic factors or anthropogenic stressors. Population structure analyses revealed a retention of ancestral polymorphism that was likely due to incomplete lineage sorting in U. cognatus, and prolonged vicariance by the Indo-Pacific Barrier has partitioned them into separate stock units. Population segregation was also shown by the phenotypic divergence in allopatric populations, regarding the premaxillary protrusion, which is possibly associated with the mechanism for upper jaw movement in biomechanical feeding approaches. The moderate genetic diversity estimated for each region, in addition to past population expansion events, indicated that U. cognatus within the IWP was still healthy and abundant (except in ST1 and 14), and two stock units were identified to be subjected to a specific resource management program.


Assuntos
Perciformes/genética , Polimorfismo Genético/genética , Animais , Primers do DNA/genética , DNA Mitocondrial/genética , Demografia/métodos , Ecologia , Complexo IV da Cadeia de Transporte de Elétrons/genética , Evolução Molecular , Genética Populacional/métodos , Geografia/métodos , Haplótipos/genética , Modelos Genéticos , Filogenia , Dinâmica Populacional
15.
PeerJ ; 8: e9679, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32844067

RESUMO

The population genetic diversity and demographic history of the longtail tuna Thunnus tonggol in Malaysian waters was investigated using mitochondrial DNA D-loop and NADH dehydrogenase subunit 5 (ND5). A total of 203 (D-loop) and 208 (ND5) individuals of T. tonggol were sampled from 11 localities around the Malaysian coastal waters. Low genetic differentiation between populations was found, possibly due to the past demographic history, dispersal potential during egg and larval stages, seasonal migration in adults, and lack of geographical barriers. The gene trees, constructed based on the maximum likelihood method, revealed a single panmictic population with unsupported internal clades, indicating an absence of structure among the populations studied. Analysis on population pairwise comparison ФST suggested the absence of limited gene flow among study sites. Taken all together, high haplotype diversity (D-loop = 0.989-1.000; ND5 = 0.848-0.965), coupled with a low level of nucleotide diversity (D-loop = 0.019-0.025; ND5 = 0.0017-0.003), "star-like" haplotype network, and unimodal mismatch distribution, suggests a recent population expansion for populations of T. tonggol in Malaysia. Furthermore, neutrality and goodness of fit tests supported the signature of a relatively recent population expansion during the Pleistocene epoch. To provide additional insight into the phylogeographic pattern of the species within the Indo-Pacific Ocean, we included haplotypes from GenBank and a few samples from Taiwan. Preliminary analyses suggest a more complex genetic demarcation of the species than an explicit Indian Ocean versus Pacific Ocean delineation.

16.
PLoS One ; 14(10): e0219336, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31622361

RESUMO

The Karnaphuli River estuary, located in southeast coast of Bangladesh, is largely exposed to heavy metal contamination as it receives a huge amount of untreated industrial effluents from the Chottagram City. This study aimed to assess the concentrations of five heavy metals (As, Pb, Cd, Cr and Cu) and their bioaccumulation status in six commercially important fishes, and also to evaluate the potential human health risk for local consumers. The hierarchy of the measured concentration level (mg/kg) of the metals was as follows: Pb (13.88) > Cu (12.10) > As (4.89) > Cr (3.36) > Cd (0.39). The Fulton's condition factor denoted that fishes were in better 'condition' and most of the species were in positive allometric growth. The bioaccumulation factors (BAFs) of the contaminants observed in the species were in the following orders: Cu (1971.42) > As (1042.93) > Pb (913.66) > Cr (864.99) > Cd (252.03), and among the specimens, demersal fish, Apocryptes bato appeared to be the most bioaccumulative organism. Estimated daily intake (EDI), target hazard quotient (THQ), hazard index (HI) and carcinogenic risk (CR) assessed for potential human health risk implications suggest that the values were within the acceptable threshold for both adults and children. However, calculated CR values indicated that both age groups were not far from the risk, and HI values demonstrated that children were nearly 6 times more susceptible to non-carcinogenic and carcinogenic health effects than adults.


Assuntos
Bioacumulação , Estuários , Peixes/metabolismo , Contaminação de Alimentos/análise , Metais Pesados , Alimentos Marinhos/análise , Poluentes Químicos da Água , Adulto , Animais , Bangladesh , Criança , Humanos , Metais Pesados/análise , Metais Pesados/metabolismo , Medição de Risco , Rios , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo
17.
Mitochondrial DNA B Resour ; 4(2): 2966-2969, 2019 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-33365813

RESUMO

Eighty-four specimens collected from 13 populations from Malaysia, Thailand, and Vietnam were analysed, revealing 21 putative haplotypes with overall estimated haplotype and nucleotide diversities of 0.79 and 0.0079, respectively. High levels of diversity and an absence of founder effects were observed among populations in peninsular Malaysia. In contrast, populations from Sarawak exhibited low genetic diversity, which is a typical sign of colonies introduced from a single source. Historical translocation of Trichopodus pectoralis from Thailand to Malaysia, as well as to the Philippines, Indonesia, and Myanmar was apparent. Historical introduction of T. pectoralis from Vietnam was also detected in peninsular Malaysia.

18.
Materials (Basel) ; 11(3)2018 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-29558424

RESUMO

Three-dimensional (3D) bio-printing is a revolutionary technology to reproduce a 3D functional living tissue scaffold in-vitro through controlled layer-by-layer deposition of biomaterials along with high precision positioning of cells. Due to its bio-compatibility, natural hydrogels are commonly considered as the scaffold material. However, the mechanical integrity of a hydrogel material, especially in 3D scaffold architecture, is an issue. In this research, a novel hybrid hydrogel, that is, sodium alginate with carboxymethyl cellulose (CMC) is developed and systematic quantitative characterization tests are conducted to validate its printability, shape fidelity and cell viability. The outcome of the rheological and mechanical test, filament collapse and fusion test demonstrate the favorable shape fidelity. Three-dimensional scaffold structures are fabricated with the pancreatic cancer cell, BxPC3 and the 86% cell viability is recorded after 23 days. This hybrid hydrogel can be a potential biomaterial in 3D bioprinting process and the outlined characterization techniques open an avenue directing reproducible printability and shape fidelity.

19.
PLoS One ; 12(3): e0171735, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28323885

RESUMO

MOTIVATION: Proper management of fecal sludge has significant positive health and environmental externalities. Most research on managing onsite sanitation so far either simulates the costs of, or the welfare effects from, managing sludge in situ in pit latrines. Thus, designing management strategies for onsite rural sanitation is challenging, because the actual costs of transporting sludge for treatment, and sources for financing these transport costs, are not well understood. METHODS: In this paper we calculate the actual cost of sludge management from onsite latrines, and identify the contributions that latrine owners are willing to make to finance the costs. A spreadsheet-based model is used to identify a cost-effective transport option, and to calculate the cost per household. Then a double-bound contingent valuation method is used to elicit from pit-latrine owners their willingness-to-pay to have sludge transported away. This methodology is employed for the case of a rural subdistrict in Bangladesh called Bhaluka, a unit of administration at which sludge management services are being piloted by the Government of Bangladesh. RESULTS: The typical sludge accumulation rate in Bhaluka is calculated at 0.11 liters/person/day and a typical latrine will need to be emptied approximately once every 3 to 4 years. The costs of emptying and transport are high; approximately USD 13 per emptying event (circa 14% of average monthly income); household contributions could cover around 47% of this cost. However, if costs were spread over time, the service would cost USD 4 per year per household, or USD 0.31 per month per household-comparable to current expenditures of rural households on telecommunications. CONCLUSION: This is one of few research papers that brings the costs of waste management together with financing of that cost, to provide evidence for an implementable solution. This framework can be used to identify cost effective sludge management options and private contributions towards that cost in other (context-specific) administrative areas where onsite sanitation is widespread.


Assuntos
Esgotos , Banheiros/economia , Gerenciamento de Resíduos/economia , Bangladesh , Análise Custo-Benefício , Humanos , Modelos Econômicos , População Rural , Meios de Transporte/economia
20.
Pak J Biol Sci ; 17(7): 920-4, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26035942

RESUMO

The efficiency of probiotics (Ecomarine) in rearing of Macrobrachium rosenbergii larvae was evaluated in a commercial prawn hatchery for five weeks. Stage-1 (zero age) larvae (of length: 2 mm; weight: 0.12 mg) were stocked at the rate of 100 L(-1). The experiment determined the growth rate, survival rate of the larvae for the both treatment and control groups. Final average weight were found 8.39 ± 3.28E-04 and 8.18 ± 2.86E-04 mg and length were found 9.08 ± 0.649 and 9.02 ± 0.081 mm for treatment and control group respectively. Comparatively higher growth performance was observed in treatment than control. Post Larvae (PL) was first observed 20th days of culture in treatment tanks whereas PL in control tanks was found 24th days of culture. Survival rate was found 58 and 46% in treatment and control group respectively. There was significant (p < 0.05) survival rate between two experiment groups. This study revealed that probiotics could be better in quality seed production of M. rosenbergii while significant changes were not noticed in the physic-chemical parameters i.e., water temperature, salinity, DO, pH, nitrate-NO2, hardness and alkalinity observed in both the treatments.


Assuntos
Palaemonidae/crescimento & desenvolvimento , Probióticos , Taxa de Sobrevida , Animais , Relação Dose-Resposta a Droga , Palaemonidae/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...