Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Genet Eng Biotechnol ; 21(1): 166, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38085389

RESUMO

BACKGROUND: Streptococcus pneumoniae is a major pathogen that poses a significant hazard to global health, causing a variety of infections including pneumonia, meningitis, and sepsis. The emergence of antibiotic-resistant strains has increased the difficulty of conventional antibiotic treatment, highlighting the need for alternative therapies such as multi-epitope vaccines. In this study, immunoinformatics algorithms were used to identify potential vaccine candidates based on the extracellular immunogenic protein Pneumococcal surface protein C (PspC). METHOD: The protein sequence of PspC was retrieved from NCBI for the development of the multi-epitope vaccine (MEV), and potential B cell and T cell epitopes were identified. Linkers including EAAAK, AAY, and CPGPG were used to connect the epitopes. Through molecular docking, molecular dynamics, and immunological simulation, the affinity between MEV and Toll-like receptors was determined. After cloning the MEV construct into the PET28a ( +) vector, SnapGene was used to achieve expression in Escherichia coli. RESULT: The constructed MEV was discovered to be stable, non-allergenic, and antigenic. Microscopic interactions between ligand and receptor are confirmed by molecular docking and molecular dynamics simulation. The use of an in-silico cloning approach guarantees the optimal expression and translation efficiency of the vaccine within an expression vector. CONCLUSION: Our study demonstrates the potential of in silico approaches for designing effective multi-epitope vaccines against S. pneumoniae. The designated vaccine exhibits the required physicochemical, structural, and immunological characteristics of a successful vaccine against SPN. However, laboratory validation is required to confirm the safety and immunogenicity of the proposed vaccine design.

2.
Biologicals ; 84: 101714, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37804694

RESUMO

In the present study, we report the complete genome of five Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) from Bangladesh harboring mutations at Spike protein (E484K, Q677H, D614G, A67V, Q52R, Y144del, H69del, V70del, F888L) assigned to the B.1.525 lineage (Variant of interest). Mutations are also found in viral structural proteins other than spike region (E_L21F, M_I82F, N_A12G and N_T208I) and other mutations (NSP3_T1189I, NSP6_S106del, NSP6_F108del, NSP6_G107del, NSP12_P323F) from all of five B.1.525 SARS-CoV-2 variants of Bangladesh. We have also found four unique mutations from two of SARS-CoV-2 B.1.525 variant of Bangladesh. Among the four unique mutations two mutations (NS7a_L96H, NS7a_Y97D) obtained from strain BCSIR-NILMRC-718, one (NSP3_A1430V) from BCSIR-NILMRC-738 and two mutation including one spike protein mutation (NSP2_L444I, Spike_I68 M) present in BCSIR-AFIP-10 strain. The identification of new mutations will contribute to characterizing SARS-CoV-2, to continue tracking its spread and better understanding its biological and clinical features to take medical countermeasures and vaccines.


Assuntos
COVID-19 , Humanos , Bangladesh , COVID-19/genética , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Mutação
3.
Sci Rep ; 13(1): 13146, 2023 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-37573409

RESUMO

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the causative agent of COVID -19, is constantly evolving, requiring continuous genomic surveillance. In this study, we used whole-genome sequencing to investigate the genetic epidemiology of SARS-CoV-2 in Bangladesh, with particular emphasis on identifying dominant variants and associated mutations. We used high-throughput next-generation sequencing (NGS) to obtain DNA sequences from COVID-19 patient samples and compared these sequences to the Wuhan SARS-CoV-2 reference genome using the Global Initiative for Sharing All Influenza Data (GISAID). Our phylogenetic and mutational analyzes revealed that the majority (88%) of the samples belonged to the pangolin lineage B.1.1.25, whereas the remaining 11% were assigned to the parental lineage B.1.1. Two main mutations, D614G and P681R, were identified in the spike protein sequences of the samples. The D614G mutation, which is the most common, decreases S1 domain flexibility, whereas the P681R mutation may increase the severity of viral infections by increasing the binding affinity between the spike protein and the ACE2 receptor. We employed molecular modeling techniques, including protein modeling, molecular docking, and quantum mechanics/molecular mechanics (QM/MM) geometry optimization, to build and validate three-dimensional models of the S_D614G-ACE2 and S_P681R-ACE2 complexes from the predominant strains. The description of the binding mode and intermolecular contacts of the referenced systems suggests that the P681R mutation may be associated with increased viral pathogenicity in Bangladeshi patients due to enhanced electrostatic interactions between the mutant spike protein and the human ACE2 receptor, underscoring the importance of continuous genomic surveillance in the fight against COVID -19. Finally, the binding profile of the S_D614G-ACE2 and S_P681R-ACE2 complexes offer valuable insights to deeply understand the binding site characteristics that could help to develop antiviral therapeutics that inhibit protein-protein interactions between SARS-CoV-2 spike protein and human ACE2 receptor.


Assuntos
COVID-19 , Animais , Humanos , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mutação , Pangolins/metabolismo , Filogenia , Ligação Proteica , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Virulência
4.
BMC Res Notes ; 14(1): 105, 2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33743798

RESUMO

OBJECTIVE: The major objective of the study was to sequence the whole genome of four Bangladeshi individuals and identify variants that are known to be associated with functional changes or disease states. We also carried out an ontology analysis to identify the functions and pathways most likely to be affected by these variants. RESULTS: We identified around 900,000 common variants and close to 5 million unique ones in all four of the individuals. This included over 11,500 variants that caused nonsynonymous changes in proteins. Heart function associated pathways were heavily implicated by the ontology analysis; corroborating previous studies that claimed the Bangladeshi population as highly susceptible to heart disorders. Two variants were found that have been previously identified as pathogenic factors in familial hypercholesteremia and structural disorders of the heart. Other pathogenic variants we found were associated with pseudoxanthoma elasticum, cancer progression, polyagglutinable erythrocyte syndrome, preeclampsia, and others.


Assuntos
Genoma , Polimorfismo de Nucleotídeo Único , Mapeamento Cromossômico , Etnicidade , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...