Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-34428141

RESUMO

We present a dynamic window-length classifier for steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs) that does not require the user to choose a feature extraction method or channel set. Instead, the classifier uses multiple feature extraction methods and channel selections to infer the SSVEP and relies on majority voting to pick the most likely target. The classifier extends the window length dynamically if no target obtains the majority of votes. Compared with existing solutions, our classifier: (i) does not assume that any single feature extraction method will consistently outperform the others; (ii) adapts the channel selection to individual users or tasks; (iii) uses dynamic window lengths; (iv) is unsupervised (i.e., does not need training). Collectively, these characteristics make the classifier easy-to-use, especially for caregivers and others with limited technical expertise. We evaluated the performance of our classifier on a publicly available benchmark dataset from 35 healthy participants. We compared the information transfer rate (ITR) of this new classifier to those of the minimum energy combination (MEC), maximum synchronization index (MSI), and filter bank canonical correlation analysis (FBCCA). The new classifier increases average ITR to 123.5 bits-per-minute (bpm), 47.5, 51.2, and 19.5 bpm greater than the MEC, MSI, and FBCCA classifiers, respectively.


Assuntos
Interfaces Cérebro-Computador , Potenciais Evocados Visuais , Algoritmos , Eletroencefalografia , Humanos , Estimulação Luminosa
2.
IEEE Internet Things J ; 7(1): 53-71, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33748312

RESUMO

In combination with current sociological trends, the maturing development of IoT devices is projected to revolutionize healthcare. A network of body-worn sensors, each with a unique ID, can collect health data that is orders-of-magnitude richer than what is available today from sporadic observations in clinical/hospital environments. When databased, analyzed, and compared against information from other individuals using data analytics, HIoT data enables the personalization and modernization of care with radical improvements in outcomes and reductions in cost. In this paper, we survey existing and emerging technologies that can enable this vision for the future of healthcare, particularly in the clinical practice of healthcare. Three main technology areas underlie the development of this field: (a) sensing, where there is an increased drive for miniaturization and power efficiency; (b) communications, where the enabling factors are ubiquitous connectivity, standardized protocols, and the wide availability of cloud infrastructure, and (c) data analytics and inference, where the availability of large amounts of data and computational resources is revolutionizing algorithms for individualizing inference and actions in health management. Throughout the paper, we use a case study to concretely illustrate the impact of these trends. We conclude our paper with a discussion of the emerging directions, open issues, and challenges.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...