Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 62(3): 836-843, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36821291

RESUMO

The diffractive zone thicknesses of conventional diffractive optical elements (DOEs) are generally obtained using the thin element approximation (TEA). However, the TEA yields inaccurate results in the case of thick multilayer DOEs (MLDOEs). The extended scalar theory (EST) is an alternative thickness optimization method that depends on the diffractive order and the optimization wavelength. We developed an algorithm to research suitable EST input parameters. It combines ray-tracing and Fourier optics to provide a performance estimate for each EST parameter pair. The resulting "best" MLDOE designs for three different material combinations are analyzed using rigorous finite-difference time-domain. Compared to the TEA, the proposed algorithm can provide performing zone thicknesses.

2.
Appl Opt ; 61(16): 4956-4966, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36255982

RESUMO

The performance (paraxial phase delay) of conventional diffractive optical elements is generally analyzed using the analytical scalar theory of diffraction, based on thin-element approximation (TEA). However, the high thickness of multilayer diffractive optical elements (MLDOEs) means that TEA yields inaccurate results. To address this, we tested a method based on ray-tracing simulations in mid-wave and long-wave infrared wave bands and for multiple f-numbers, together with the effect of MLDOE phase delay on a collimated on-axis beam with an angular spectrum method. Thus, we accurately generate optical figures of merit (point spread function along the optical axis, Strehl ratio at the "best" focal plane, and chromatic focal shift) and, by using a finite-difference time-domain method as a reference solution, demonstrate it as a valuable tool to describe and quantify the longitudinal chromatic aberration of MLDOEs.

3.
Appl Opt ; 61(25): 7415-7423, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36256043

RESUMO

The polychromatic integral diffraction efficiency (PIDE) metric is generally used to select the most suitable materials for multilayer diffractive optical elements (MLDOEs). However, this method is based on the thin element approximation, which yields inaccurate results in the case of thick diffractive elements such as MLDOEs. We propose a new material selection approach, to the best of our knowledge, based on three metrics: transmission, total internal reflection, and the optical component's total thickness. This approach, called "geometric optics material selection method" (GO-MSM), is tested in mid-wave and long-wave infrared bands. Finite-difference time-domain is used to study the optical performance (Strehl ratio) of the "optimal" MLDOE combinations obtained with the PIDE metric and the GO-MSM. Only the proposed method can provide MLDOE designs that perform. This study also shows that an MLDOE gap filled with a low index material (air) strongly degrades the image quality.

4.
Access Microbiol ; 4(3): 000342, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693470

RESUMO

Introduction. In the context of the global pandemic due to SARS-CoV-2, procurement of personal protective equipment during the crisis was problematic. The idea of reusing and decontaminating personal surgical masks in facilities was explored in order to avoid the accumulation of waste and overcome the lack of equipment. Hypothesis. Our hypothesis is that this work will show the decontamination methods assessed are effective for bacteria, such as Staphylococcus aureus and Pseudomonas aeruginosa . Aim. We aim to provide information about the effects of five decontamination procedures (UV treatment, dry heat, vaporized H2O2, ethanol treatment and blue methylene treatment) on S. aureus and P. aeruginosa . These bacteria are the main secondary bacterial pathogens responsible for lung infections in the hospital environment. Methodology. The surgical masks and the filtering facepiece respirators were inoculated with two bacterial strains ( S. aureus ATCC 29213 and P. aeruginosa S0599) and submitted to five decontamination treatments: vaporized H2O2 (VHP), UV irradiation, dry heat treatment, ethanol bath treatment and blue methylene treatment. Direct and indirect microbiology assessments were performed on three positive controls, five treated masks and one negative control. Results. The five decontaminations showed significant (P<0.05) but different degrees of reductions of S. aureus and P. aeruginosa . VHP, dry heat treatment and ethanol treatment adequately reduced the initial contamination. The 4 min UV treatment allowed only a reduction to five orders of magnitude for face mask respirators. The methylene blue treatment induced a reduction to two orders of magnitude. Conclusions. The three methods that showed a log10 reduction factor of 6 were the dry heat method, VHP and ethanol bath treatment. These methods are effective and their establishment in the medical field are easy but require economic investment.

5.
Appl Opt ; 60(7): 2037-2045, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33690296

RESUMO

In this paper, we propose to explore the infrared (IR) behavior of multilayer diffractive optical elements (MLDOEs). IR MLDOEs are designed for the development of space instruments dedicated to Earth observation. The phase effect of the MLDOE on a paraxial plane wave is studied using exact kinoform shapes for each layer. The modeling of the optical path difference uses thin element approximation. Until now, MLDOEs have been designed and simulated on ray-tracing software with binary diffractive layers. In this study, after passing through the MLDOE, the field is propagated using a method that utilizes the angular spectrum of plane waves. The Strehl ratio is used to determine the "best focus" plane, where it is shown that the focalization efficiency is above 95% for the working order in the mid- and long-wave IR bands. This result, along with the very low energy content of the other orders, proves the strong imaging potential of MLDOEs for dual-band applications. It is also demonstrated that the MLDOE has the same chromatic behavior as standard DOEs, making it a very useful component for IR achromatization.

6.
Appl Opt ; 57(18): 5048-5056, 2018 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-30117965

RESUMO

Diffraction gratings are very important in hyperspectral imaging. Their desired diffraction efficiency is dictated by the sensitivity of the detector in the spectral band of interest and the luminance of the scene to be observed. If the desired diffraction efficiency curve is established in this spectral band of interest, the remaining work is to design a diffraction grating that meets this demand. This paper is concerned with blazed gratings in reflection, and the geometry of the grating will therefore depend on this reference curve, the spectral band, and the optimization order. The simplest form is a grating with a uniform profile that is optimized at a single-blaze wavelength. It is a monoblaze grating. When such grating cannot meet the requirements in terms of diffraction efficiency, a multiblaze grating optimized at several blaze wavelengths is required. The objective of this paper is to propose a method of optimization of this multiblaze grating, i.e., how to find the number of blaze wavelengths necessary as well as their value to answer the requirements in term of diffraction efficiency.

7.
Appl Opt ; 54(22): 6666-73, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26368078

RESUMO

This paper presents a new design of a planar solar concentrator with spectral splitting of light for space applications. This concentrator spectrally splits the incident light into mainly two parts. Each part is then focused onto specific spatially separated photovoltaic cells allowing for independent control of respective cells' output power. These advantages of both spectral splitting and light focusing are combined here because of a specific diffraction grating superimposed on a Fresnel lens. The theoretical principle of the optical design is presented with optimization of each element and improvement steps including optimization of grating period evolution along the lens and testing of two kinds of gratings (a blazed and a lamellar one). First numerical results are presented highlighting the possibility to design a concentrator at about 10× or more for each cell with an output power larger than that of a classical concentrator focusing on a GaAs single junction cell and less than 10% of losses for tracking errors up to ±0.8°. Some experimental results are also presented.

8.
Appl Opt ; 54(15): 4765-70, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-26192513

RESUMO

This paper will present a prototype of the first set of vortex retarders made of liquid crystal polymers recorded by polarization holography. Vortex retarders are birefringent plates characterized by a rotation of their fast axis. Liquid crystals possess birefringent properties and they are locally orientable. Their orientation is defined by the perpendicular to the local orientation of the recording field. Polarization holography is a purely optical recording method. It is based on the superimposition of coherent and differently polarized beams. It is used to shape the electric field pattern to enable the recording of vortex retarders. The paper details the mathematical model of the superimposition process. The recording setup is exposed; it is characterized by a nearly common path interferometer. Two sets of measurements allowing the prediction of the retarder's features are presented and compared. Finally, the experimentally recorded retarder is shown, its characteristics are investigated and compared to the predicted ones.

9.
Phys Chem Chem Phys ; 15(45): 19799-806, 2013 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-24146075

RESUMO

Although platinum (Pt) is a rare and very expensive material, Pt counter electrodes are still very commonly used for reaching high efficiencies in dye-sensitized solar cells (DSCs). The use of alternative cheaper catalyst materials did not yet yield equivalent efficiencies. In this work, we tried to understand how to reduce the amount of deposited Pt-material and simultaneously deliver higher DSC performances. We systematically compared the properties of Pt-counter electrodes prepared by simple solution deposition methods such as spray-coating, dip-coating, brushing with reference to the Pt-electrodes prepared by sputtering onto fluorine doped-tin oxides (FTOs). The morphological and structural characterizations of the deposited Pt-layers were performed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The composition of Pt-material was quantified using SEM electron dispersive X-ray (EDX) mapping measurements which were further compared with optical transmission measurements. Also contact angle and sheet resistance measurements were performed. By taking Pt-layers composition, morphology and structural factors into account, 9.16% efficient N3 dye based DSCs were assembled. The DSCs were subjected to various opto-electrical characterization techniques like current-voltage (I-V), external quantum efficiency (EQE), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and transient photo voltage (TPV) measurements. The obtained experimental data suggest that the Pt counter electrodes prepared by solution deposition methods can also reach high DSC device performances with a consumption of very little amount of Pt material as compared with sputtered Pt-layers. This process also proves that higher DSC performances are not limited to the usage of sputtered Pt-layer as counter electrode.

10.
Appl Opt ; 52(28): 7040-8, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24085221

RESUMO

We present an original static recording method for vortex retarders (VRs) made from liquid crystal polymers (LCPs) using the superimposition of several polarized beams. VRs are birefringent plates characterized by a rotation of their fast axis about their center. The new method is based on polarization holography and photo-orientable LCP. Combining several polarized beams induces the polarization patterns required for the recording process of VRs without mechanical action. A mathematical description of the method, the outcomes of the numerical simulations, and the first experimental results are presented.

11.
Opt Lett ; 38(10): 1730-2, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23938926

RESUMO

The maximum concentration ratio achievable with a solar concentrator made of a single refractive primary optics is much more limited by the chromatic aberration than by any other aberration. Therefore achromatic doublets made with poly(methyl methacrylate) and polycarbonate are of great interest to enhance the concentration ratio and to achieve a spectrally uniform flux on the receiver. In this Letter, shaped achromatic Fresnel lenses are investigated. One lossless design is of high interest since it provides spectrally and spatially uniform flux without being affected by soiling problems. With this design an optical concentration ratio of about 8500× can be achieved.

12.
Appl Opt ; 51(24): 5897-902, 2012 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-22907019

RESUMO

In this paper, we present a solution for creating robust monolithic achromatic half-wave plates (HWPs) for the infrared, based on the form birefringence of subwavelength gratings (SWGs) made out of diamond. We use the rigorous coupled wave analysis to design the gratings. Our analysis shows that diamond, besides its outstanding physical and mechanical properties, is a suitable substrate to manufacture mid-infrared HWPs, thanks to its high refractive index, which allows etching SWGs with lower aspect ratio. Based on our optimized design, we manufactured a diamond HWP for the 11-13.2 µm region, with an estimated mean retardance ~3.143±0.061 rad (180.08±3.51°). In addition, an antireflective grating was etched on the backside of the wave plate, allowing a total transmittance between 89% and 95% over the band.

13.
Opt Lett ; 36(14): 2743-5, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21765528

RESUMO

Solar concentrators made of a single refractive primary optics are limited to a concentration ratio of about 1000× [Opt. Express 19, A280 (2011)], due only to longitudinal chromatic aberration, while mirrors are limited to ∼46,000× by the angular size of the Sun. To reduce the chromatic aberration while keeping cost-effective systems for concentrated photovoltaics, a study of four different kinds of flat Fresnel doublets made of polycarbonates and polymethyl methacrylate is presented. It reveals that Fresnel doublets may have fewer optical losses than non-Fresnel doublets, with a lower lateral chromatic split allowing for even higher concentration ratio.

14.
Opt Express ; 19 Suppl 3: A280-94, 2011 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-21643369

RESUMO

The linear chromatic aberration (LCA) of several combinations of polycarbonates (PCs) and poly (methyl methacrylates) (PMMAs) as singlet, hybrid (refractive/diffractive) lenses and doublets operating with wavelengths between 380 and 1600 nm - corresponding to a typical zone of interest of concentrated photovoltaics (CPV) - are compared. Those comparisons show that the maximum theoretical concentration factor for singlets is limited to about 1000 × at normal incidence and that hybrid lenses and refractive doublets present a smaller LCA increasing the concentration factor up to 5000 × and 2 × 10(6) respectively. A new achromatization equation more useful than the Abbé equation is also presented. Finally we determined the ideal position of the focal point as a function of the LCA and the geometric concentration which maximizes the flux on the solar cell.

15.
J Biomed Opt ; 13(4): 044010, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19021338

RESUMO

The direct simultaneous acquisition of coherent imaging and strain information is of particular importance in the biomechanical characterization of biological tissue. This type of simultaneous information acquisition can be accomplished using a coupled photorefractive holography and shearography system for imaging and strain measurements, respectively. Optical scattering in a conventional speckle shearing interferometer rapidly reduces the contrast of the shearing fringes, thereby limiting the use of such interferometers with opaque surfaces. By coupling photorefractive holography with speckle shearing interferometry, properties of the photorefractive effect (spatial high-pass filtering and temporal low-pass filtering) combine to restore the shearing fringe contrast and enable strain imaging in diffusing media. This effect is demonstrated using synthetic scattering phantoms built from suspensions of silica spheres in water.


Assuntos
Técnicas de Imagem por Elasticidade/instrumentação , Holografia/instrumentação , Nefelometria e Turbidimetria/instrumentação , Refratometria/instrumentação , Tomografia de Coerência Óptica/instrumentação , Módulo de Elasticidade , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Espalhamento de Radiação , Resistência ao Cisalhamento , Tomografia de Coerência Óptica/métodos
16.
Opt Lett ; 33(8): 797-9, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18414536

RESUMO

By coupling photorefractive holography with speckle shearography, it is possible to simultaneously perform both coherent imaging and strain measurement. Use of the photorefractive effect, which is insensitive to incoherently scattered light, is a significant advantage in coherent imaging as described. Experimental results obtained from a centrally loaded steel plate are presented.

17.
Sensors (Basel) ; 7(11): 2846-2859, 2007 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-28903265

RESUMO

Quantitative Accelerated Life Testing (QALT) is a solution for assessing thereliability of Micro Electro Mechanical Systems (MEMS). A procedure for QALT is shownin this paper and an attempt to assess the reliability level for a batch of MEMSaccelerometers is reported. The testing plan is application-driven and contains combinedtests: thermal (high temperature) and mechanical stress. Two variants of mechanical stressare used: vibration (at a fixed frequency) and tilting. Original equipment for testing at tiltingand high temperature is used. Tilting is appropriate as application-driven stress, because thetilt movement is a natural environment for devices used for automotive and aerospaceapplications. Also, tilting is used by MEMS accelerometers for anti-theft systems. The testresults demonstrated the excellent reliability of the studied devices, the failure rate in the"worst case" being smaller than 10-7h-1.

18.
Opt Express ; 15(20): 12850-65, 2007 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-19550553

RESUMO

We propose a new family of achromatic phase shifters for infrared nulling interferometry. These key optical components can be seen as optimized Fresnel rhombs, using the total internal reflection phenomenon, modulated or not. The total internal reflection indeed comes with a phase shift between the polarization components of the incident light. We propose a solution to implement this vectorial phase shift between interferometer arms to provide the destructive interference process needed to disentangle highly contrasted objects from one another. We also show that, modulating the index transition at the total internal reflection interface allows compensating for the intrinsic material dispersion in order to make the subsequent phase shift achromatic over especially broad bands. The modulation can be induced by a thin film of a well-chosen material or a subwavelength grating whose structural parameters are thoroughly optimized. We present results from theoretical simulations together with preliminary fabrication outcomes and measurements for a prototype in Zinc Selenide.

19.
Appl Opt ; 45(27): 6910-3, 2006 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-16946764

RESUMO

Flatness of the wavefront diffracted by grating can be mandatory for some applications. At ambient temperature, the wavefront diffracted by a volume phase holographic grating (VPHG) is well mastered by the manufacturing process and can be corrected or shaped by postpolishing. However, to be used in cooled infrared spectrometers, VPHGs have to stand and work properly at low temperatures. We present the measurement of the wavefront diffracted by a typical VPHG at various temperatures down to 150 K and at several thermal inhomogeneity amplitudes. The particular grating observed was produced using a dichromated gelatine technique and encapsulated between two glass blanks. Diffracted wavefront measurements show that the wavefront is extremely stable according to the temperature as long as the latter is homogeneous over the grating stack volume. Increasing the thermal inhomogeneity increases the wavefront error that pinpoints the importance of the final instrument thermal design. This concludes the dichromated gelatine VPHG technology, used more and more in visible spectrometers, can be applied as it is to cooled IR spectrometers.

20.
Opt Express ; 13(22): 8686-92, 2005 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-19498900

RESUMO

Nulling interferometry constitutes a very promising technique in observational astrophysics. This method consists in attenuating the signal of a bright astrophysical object in order to detect much fainter nearby features, e.g. exoplanets around their host star. An on-axis destructive interference is created by adjusting the phases of the beams coming from various telescopes. The huge flux ratio between the parent star and the planet (106 in the thermal infrared) requires unprecedented high performance broadband phase shifters. We present a new design for these key components called Achromatic Phase Shifters (APS). We propose to use subwavelength diffractive optical elements under total internal reflection (TIR) incidence. Our component can be seen as an evolution of the Fresnel Rhomb technology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA