Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Clin Transl Radiat Oncol ; 43: 100689, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37867612

RESUMO

Objective: To investigate the potential to reduce the cochlear dose with robotic photon radiosurgery or intensity-modulated proton therapy planning for vestibular schwannomas. Materials and Methods: Clinically delivered photon radiosurgery treatment plans were compared to five cochlear-optimized plans: one photon and four proton plans (total of 120). A 1x12 Gy dose was prescribed. Photon plans were generated with Precision (Cyberknife, Accuray) with no PTV margin for set-up errors. Proton plans were generated using an in-house automated multi-criterial planning system with three or nine-beam arrangements, and applying 0 or 3 mm robustness for set-up errors during plan optimization and evaluation (and 3 % range robustness). The sample size was calculated based on a reduction of cochlear Dmean > 1.5 Gy(RBE) from the clinical plans, and resulted in 24 patients. Results: Compared to the clinical photon plans, a reduction of cochlear Dmean > 1.5 Gy(RBE) could be achieved in 11/24 cochlear-optimized photon plans, 4/24 and 6/24 cochlear-optimized proton plans without set-up robustness for three and nine-beam arrangement, respectively, and in 0/24 proton plans with set-up robustness. The cochlea could best be spared in cases with a distance between tumor and cochlea. Using nine proton beams resulted in a reduced dose to most organs at risk. Conclusion: Cochlear dose reduction is possible in vestibular schwannoma radiosurgery while maintaining tumor coverage, especially when the tumor is not adjacent to the cochlea. With current set-up robustness, proton therapy is capable of providing lower dose to organs at risk located distant to the tumor, but not for organs adjacent to it. Consequently, photon plans provided better cochlear sparing than proton plans.

2.
Phys Med Biol ; 68(17)2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37494944

RESUMO

Objective. The Dutch proton robustness evaluation protocol prescribes the dose of the clinical target volume (CTV) to the voxel-wise minimum (VWmin) dose of 28 scenarios. This results in a consistent but conservative near-minimum CTV dose (D98%,CTV). In this study, we analyzed (i) the correlation between VWmin/voxel-wise maximum (VWmax) metrics and actually delivered dose to the CTV and organs at risk (OARs) under the impact of treatment errors, and (ii) the performance of the protocol before and after its calibration with adequate prescription-dose levels.Approach. Twenty-one neuro-oncological patients were included. Polynomial chaos expansion was applied to perform a probabilistic robustness evaluation using 100,000 complete fractionated treatments per patient. Patient-specific scenario distributions of clinically relevant dosimetric parameters for the CTV and OARs were determined and compared to clinical VWmin and VWmax dose metrics for different scenario subsets used in the robustness evaluation protocol.Main results. The inclusion of more geometrical scenarios leads to a significant increase of the conservativism of the protocol in terms of clinical VWmin and VWmax values for the CTV and OARs. The protocol could be calibrated using VWmin dose evaluation levels of 93.0%-92.3%, depending on the scenario subset selected. Despite this calibration of the protocol, robustness recipes for proton therapy showed remaining differences and an increased sensitivity to geometrical random errors compared to photon-based margin recipes.Significance. The Dutch proton robustness evaluation protocol, combined with the photon-based margin recipe, could be calibrated with a VWmin evaluation dose level of 92.5%. However, it shows limitations in predicting robustness in dose, especially for the near-maximum dose metrics to OARs. Consistent robustness recipes could improve proton treatment planning to calibrate residual differences from photon-based assumptions.


Assuntos
Neoplasias , Terapia com Prótons , Radioterapia de Intensidade Modulada , Humanos , Prótons , Calibragem , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Órgãos em Risco , Terapia com Prótons/métodos
3.
Radiother Oncol ; 186: 109729, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37301261

RESUMO

BACKGROUND AND PURPOSE: In the Netherlands, head-and-neck cancer (HNC) patients are referred for proton therapy (PT) through model-based selection (MBS). However, treatment errors may compromise adequate CTV dose. Our aims are: (i) to derive probabilistic plan evaluation metrics on the CTV consistent with clinical metrics; (ii) to evaluate plan consistency between photon (VMAT) and proton (IMPT) planning in terms of CTV dose iso-effectiveness and (iii) to assess the robustness of the OAR doses and of the risk toxicities involved in the MBS. MATERIALS AND METHODS: Sixty HNC plans (30 IMPT/30 VMAT) were included. A robustness evaluation with 100,000 treatment scenarios per plan was performed using Polynomial Chaos Expansion (PCE). PCE was applied to determine scenario distributions of clinically relevant dosimetric parameters, which were compared between the 2 modalities. Finally, PCE-based probabilistic dose parameters were derived and compared to clinical PTV-based photon and voxel-wise proton evaluation metrics. RESULTS: Probabilistic dose to near-minimum volume v = 99.8% for the CTV correlated best with clinical PTV-D98% and VWmin-D98%,CTV doses for VMAT and IMPT respectively. IMPT showed slightly higher nominal CTV doses, with an average increase of 0.8 GyRBE in the median of the D99.8%,CTV distribution. Most patients qualified for IMPT through the dysphagia grade II model, for which an average NTCP gain of 10.5 percentages points (%-point) was found. For all complications, uncertainties resulted in moderate NTCP spreads lower than 3 p.p. on average for both modalities. CONCLUSION: Despite the differences between photon and proton planning, the comparison between PTV-based VMAT and robust IMPT is consistent. Treatment errors had a moderate impact on NTCPs, showing that the nominal plans are a good estimator to qualify patients for PT.


Assuntos
Neoplasias de Cabeça e Pescoço , Terapia com Prótons , Radioterapia de Intensidade Modulada , Humanos , Incerteza , Prótons , Neoplasias de Cabeça e Pescoço/radioterapia , Neoplasias de Cabeça e Pescoço/etiologia , Dosagem Radioterapêutica , Terapia com Prótons/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Órgãos em Risco
4.
Radiother Oncol ; 184: 109674, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37084885

RESUMO

OBJECTIVE: The interpretation of new enhancing lesions after radiotherapy for diffuse glioma remains a clinical challenge. We sought to characterize and classify new contrast enhancing lesions in a historical multicenter cohort of patients with IDH mutated grade 2 diffuse glioma treated with photon therapy. METHODS: We reviewed all follow-up MRI's of all patients treated with radiotherapy for histologically confirmed, IDH mutated diffuse grade 2 glioma between 1-1-2007 and 31-12-2018 in two tertiary referral centers. Disease progression (PD) was defined in accordance with the RANO criteria for progressive disease in low grade glioma. Pseudoprogression (psPD) was defined as any transient contrast-enhancing lesion between the end of radiotherapy and PD, or any new contrast-enhancing lesion that remained stable over a period of 12 months in patients who did not exhibit PD. RESULTS: A total of 860 MRI's of 106 patients were reviewed. psPD was identified in 24 patients (23%) on 76 MRI's. The cumulative incidence of psPD was 13% at 1 year, 22% at 5 years, and 28% at 10 years. The mean of the observed maximal volume of psPD was 2.4 cc. The median Dmin in psPD lesions was 50.1 Gy. The presence of an 1p/19q codeletion was associated with an increased risk of psPD (subhazard ratio 2.34, p = 0.048). psPD was asymptomatic in 83% of patients. CONCLUSION: The cumulative incidence of psPD in grade 2 diffuse glioma increases over time. Consensus regarding event definition and statistical analysis is needed for comparisons between series investigating psPD.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/radioterapia , Glioma/genética , Glioma/radioterapia , Glioma/patologia , Imageamento por Ressonância Magnética , Progressão da Doença , Mutação , Isocitrato Desidrogenase/genética , Estudos Multicêntricos como Assunto
5.
Int J Radiat Oncol Biol Phys ; 115(3): 759-767, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36057377

RESUMO

PURPOSE: FLASH dose rates >40 Gy/s are readily available in proton therapy (PT) with cyclotron-accelerated beams and pencil-beam scanning (PBS). The PBS delivery pattern will affect the local dose rate, as quantified by the PBS dose rate (PBS-DR), and therefore needs to be accounted for in FLASH-PT with PBS, but it is not yet clear how. Our aim was to optimize patient-specific scan patterns for stereotactic FLASH-PT of early-stage lung cancer and lung metastases, maximizing the volume irradiated with PBS-DR >40 Gy/s of the organs at risk voxels irradiated to >8 Gy (FLASH coverage). METHODS AND MATERIALS: Plans to 54 Gy/3 fractions with 3 equiangular coplanar 244 MeV proton shoot-through transmission beams for 20 patients were optimized with in-house developed software. Planning target volume-based planning with a 5 mm margin was used. Planning target volume ranged from 4.4 to 84 cc. Scan-pattern optimization was performed with a Genetic Algorithm, run in parallel for 20 independent populations (islands). Mapped crossover, inversion, swap, and shift operators were applied to achieve (local) optimality on each island, with migration between them for global optimality. The cost function was chosen to maximize the FLASH coverage per beam at >8 Gy, >40 Gy/s, and 40 nA beam current. The optimized patterns were evaluated on FLASH coverage, PBS-DR distribution, and population PBS-DR-volume histograms, compared with standard line-by-line scanning. Robustness against beam current variation was investigated. RESULTS: The optimized patterns have a snowflake-like structure, combined with outward swirling for larger targets. A population median FLASH coverage of 29.0% was obtained for optimized patterns compared with 6.9% for standard patterns, illustrating a significant increase in FLASH coverage for optimized patterns. For beam current variations of 5 nA, FLASH coverage varied between -6.1%-point and 2.2%-point for optimized patterns. CONCLUSIONS: Significant improvements on the PBS-DR and, hence, on FLASH coverage and potential healthy-tissue sparing are obtained by sequential scan-pattern optimization. The optimizer is flexible and may be further fine-tuned, based on the exact conditions for FLASH.


Assuntos
Neoplasias Pulmonares , Terapia com Prótons , Radioterapia de Intensidade Modulada , Humanos , Dosagem Radioterapêutica , Terapia com Prótons/efeitos adversos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/etiologia , Pulmão/diagnóstico por imagem , Órgãos em Risco/diagnóstico por imagem , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos
6.
Radiother Oncol ; 163: 121-127, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34352313

RESUMO

BACKGROUND AND PURPOSE: Scenario-based robust optimization and evaluation are commonly used in proton therapy (PT) with pencil beam scanning (PBS) to ensure adequate dose to the clinical target volume (CTV). However, a statistically accurate assessment of the clinical application of this approach is lacking. In this study, we assess target dose in a clinical cohort of neuro-oncological patients, planned according to the DUPROTON robustness evaluation consensus, using polynomial chaos expansion (PCE). MATERIALS AND METHODS: A cohort of the first 27 neuro-oncological patients treated at HollandPTC was used, including realistic error distributions derived from geometrical and stopping-power prediction (SPP) errors. After validating the model, PCE-based robustness evaluations were performed by simulating 100.000 complete fractionated treatments per patient to obtain accurate statistics on clinically relevant dosimetric parameters and population-dose histograms. RESULTS: Treatment plans that were robust according to clinical protocol and treatment plansin which robustness was sacrificed are easily identified. For robust treatment plans on average, a CTV dose of 3 percentage points (p.p.) more than prescribed was realized (range +2.7 p.p. to +3.5 p.p.) for 98% of the sampled fractionated treatments. For the entire patient cohort on average, a CTV dose of 0.1 p.p. less than prescribed was achieved (range -2.4 p.p. to +0.5 p.p.). For the 6 treatment plans in which robustness was clinically sacrificed, normalized CTV doses of 0.98, 0.94(7)1, 0.94, 0.91, 0.90 and 0.89 were realized. The first of these was clinically borderline non-robust. CONCLUSION: The clinical robustness evaluation protocol is safe in terms of CTV dose as all plans that fulfilled the clinical robustness criteria were also robust in the PCE evaluation. Moreover, for plans that were non-robust in the PCE-based evaluation, CTV dose was also lower than prescribed in the clinical evaluation.


Assuntos
Neoplasias , Terapia com Prótons , Radioterapia de Intensidade Modulada , Humanos , Órgãos em Risco , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
7.
Radiother Oncol ; 141: 267-274, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31492443

RESUMO

BACKGROUND AND PURPOSE: A planning target volume (PTV) in photon treatments aims to ensure that the clinical target volume (CTV) receives adequate dose despite treatment uncertainties. The underlying static dose cloud approximation (the assumption that the dose distribution is invariant to errors) is problematic in intensity modulated proton treatments where range errors should be taken into account as well. The purpose of this work is to introduce a robustness evaluation method that is applicable to photon and proton treatments and is consistent with (historic) PTV-based treatment plan evaluations. MATERIALS AND METHODS: The limitation of the static dose cloud approximation was solved in a multi-scenario simulation by explicitly calculating doses for various treatment scenarios that describe possible errors in the treatment course. Setup errors were the same as the CTV-PTV margin and the underlying theory of 3D probability density distributions was extended to 4D to include range errors, maintaining a 90% confidence level. Scenario dose distributions were reduced to voxel-wise minimum and maximum dose distributions; the first to evaluate CTV coverage and the second for hot spots. Acceptance criteria for CTV D98 and D2 were calibrated against PTV-based criteria from historic photon treatment plans. RESULTS: CTV D98 in worst case scenario dose and voxel-wise minimum dose showed a very strong correlation with scenario average D98 (R2 > 0.99). The voxel-wise minimum dose visualised CTV dose conformity and coverage in 3D in agreement with PTV-based evaluation in photon therapy. Criteria for CTV D98 and D2 of the voxel-wise minimum and maximum dose showed very strong correlations to PTV D98 and D2 (R2 > 0.99) and on average needed corrections of -0.9% and +2.3%, respectively. CONCLUSIONS: A practical approach to robustness evaluation was provided and clinically implemented for PTV-less photon and proton treatment planning, consistent with PTV evaluations but without its static dose cloud approximation.


Assuntos
Terapia com Prótons/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Humanos , Dosagem Radioterapêutica , Erros de Configuração em Radioterapia , Radioterapia de Intensidade Modulada/métodos
8.
Radiother Oncol ; 125(3): 507-513, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29050954

RESUMO

BACKGROUND AND PURPOSE: The TRENDY trial is an international multi-center phase-II study, randomizing hepatocellular carcinoma (HCC) patients between transarterial chemoembolization (TACE) and stereotactic body radiation therapy (SBRT) with a target dose of 48-54 Gy in six fractions. The radiotherapy quality assurance (QA) program, including prospective plan feedback based on automated treatment planning, is described and results are reported. MATERIALS AND METHODS: Scans of a single patient were used as a benchmark case. Contours submitted by nine participating centers were compared with reference contours. The subsequent planning round was based on a single set of contours. A total of 20 plans from participating centers, including 12 from the benchmark case, 5 from a clinical pilot and 3 from the first study patients, were compared to automatically generated VMAT plans. RESULTS: For the submitted liver contours, Dice Similarity Coefficients (DSC) with the reference delineation ranged from 0.925 to 0.954. For the GTV, the DSC varied between 0.721 and 0.876. For the 12 plans on the benchmark case, healthy liver normal-tissue complication probabilities (NTCPs) ranged from 0.2% to 22.2% with little correlation between NCTP and PTV-D95% (R2 < 0.3). Four protocol deviations were detected in the set of 20 treatment plans. Comparison with co-planar autoVMAT QA plans revealed these were due to too high target dose and suboptimal planning. Overall, autoVMAT resulted in an average liver NTCP reduction of 2.2 percent point (range: 16.2 percent point to -1.8 percent point, p = 0.03), and lower doses to the healthy liver (p < 0.01) and gastrointestinal organs at risk (p < 0.001). CONCLUSIONS: Delineation variation resulted in feedback to participating centers. Automated treatment planning can play an important role in clinical trials for prospective plan QA as suboptimal plans were detected.


Assuntos
Benchmarking , Carcinoma Hepatocelular/radioterapia , Quimioembolização Terapêutica , Neoplasias Hepáticas/radioterapia , Garantia da Qualidade dos Cuidados de Saúde , Radiocirurgia , Planejamento da Radioterapia Assistida por Computador/métodos , Humanos , Estudos Prospectivos , Dosagem Radioterapêutica
9.
Artigo em Inglês | MEDLINE | ID: mdl-26274242

RESUMO

Arrays of coupled limit-cycle oscillators represent a paradigmatic example for studying synchronization and pattern formation. We find that the full dynamical equations for the phase dynamics of a limit-cycle oscillator array go beyond previously studied Kuramoto-type equations. We analyze the evolution of the phase field in a two-dimensional array and obtain a "phase diagram" for the resulting stationary and nonstationary patterns. Our results are of direct relevance in the context of currently emerging experiments on nano- and optomechanical oscillator arrays, as well as for any array of coupled limit-cycle oscillators that have undergone a Hopf bifurcation. The possible observation in optomechanical arrays is discussed briefly.


Assuntos
Modelos Teóricos , Periodicidade , Movimento (Física)
10.
Opt Lett ; 35(20): 3535-7, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20967125

RESUMO

We study geometric phases that arise from (cyclic) transformations of the transverse spatial structure of paraxial optical modes. Our approach involves bosonic ladder operators that, in the spirit of the quantum-mechanical harmonic oscillator, generate sets of transverse optical modes. It applies to modes of all orders in a very natural way and provides a universal geometric interpretation of the phase shifts acquired by nonastigmatic modes under typical experimental conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...